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Abstract

Over the past decades, there have been growing policy and scholarly concerns related to
sustainable development in light of growing trends in resource depletion, climate change and
environmental degradation. Moreover, such concerns have been documented to be more
apparent in sub-Saharan Africa compared to other regions of the world. This study examines
the role of green innovation and industrial structure in the relationship between information
and communication technologies (ICTs) and environmentally sustainable development in
Sub-Saharan Africa (SSA). Utilising data from 41 SSA countries from 1998 to 2022, we employ
the ARDL model, PMG estimator, and Granger causality to address methodological
challenges. Our findings show that ICT and green innovation are essential for promoting
environmental sustainability. Specifically, the results reveal that ICT significantly reduces CO-
emissions, and investments in green technology also lead to substantial reductions in carbon
and methane emissions. However, the industrial structure in SSA countries presents challenges
tfo environmental sustainability. Moreover, the interaction effects between ICT and GDP, as
well as between ICT and foreign direct investment (FDI), suggest that integrating ICT with
economic growth and FDI can significantly reduce both carbon and methane emissions.
Therefore, policymakers are urged to decouple economic growth from environmental
degradation by investing in ICT and implementing regulations that encourage sustainable

practices among investors.

Keywords: information and communication technologies; environmental sustainability; green
tfechnology; industrial structure; Sub-Saharan Africa



1. Intfroduction

In recent decades, the global discourse on sustainable development has increased
due to growing concerns over environmental degradation, climate change, and resource
depletion (Musah et al., 2023; Rockstrom et al., 2009; Steffen et al., 2015). This has shifted
attention toward the intersection of economic transformation and environmental
sustainability, particularly the role of information and communication technologies (ICTs)—
green technology—and industrial structures. The widespread adoption of ICT has revolutionised
commerce, communication, and social interactions, offering unique opportunities for
economic growth and development (Asongu and Le Roux, 2023; Tchamyou et al., 2023;
Brynjolfsson, 2014; Manyika, 2016). However, concerns remain about its environmental impact.
Similarly, the adoption of green technology, including innovations aimed at reducing carbon
emissions, improving energy efficiency, and promoting sustainable practices, has gained
fraction as nations fransition towards low-carbon economies. Moreover, the structure of
industrial activities, shaped by tfrade dynamics, investment patterns, and policy frameworks,
plays a pivotal role in environmental outcomes. Industrial structures, such as dependence on
carbon-intensive industries or weak regulatory systems, can hinder progress foward

environmental sustainability (Kumar et al., 2017; Smulders and de Nooij, 2003).

Sub-Saharan Africa (SSA) finds itself at a critical juncture in its development frajectory,
confronted with the dual challenge of achieving economic growth while addressing pressing
environmental concerns. One key factor driving this change is ICT, which has fundamentally
tfransformed human society. ICT significantly supports the development of both advanced and
emerging economies (Agboola, 2006; Asongu & Le Roux, 2017). Furthermore, the importance
of ICT has expanded beyond a few economic sectors to encompass banking and finance,
education, health, energy (Donkor et al., 2022), and various industries (Isiaka et al., 2024). This
broadening scope highlights ICT's vital role in promoting sustainable development in the

region.

Due to its universal use in advanced nations, ICT's conftribution to economic growth
cannot be overlooked, yet its impact on environmental pollution is still debated (Manu et al.,
2024). The significance of ICT is increasing, and energy consumpfion related to ICT usage has
risen at arate of 7% per year over the past few decades (Xuezhou et al., 2021). By 2012, globall
energy consumption due to ICT-related products increased to 4.7%, up from 3.9% in 2007
(Manu et al., 2024). In light of this, the ICT sector's overall contribution to carbon dioxide (CO2)
emissions reached 2% by 2012 (Musah et al., 2023). The ICT industry's share of CO2 emissions is
rising due to pollution from the production of ICT-related materials (Musah et al., 2023) and
increased energy demand from the greater use of the internet, mobile devices, and
computers (Qalati et al., 2024), which are primary factors in diminishing environmental quality
(Cho et al., 2007).



Most research examining the adverse effects of ICT on the environment has focused
on energy usage. The production and widespread use of ICT-related products have
contributed to increased energy consumption, with some literature suggesting a favorable
impact of this consumption on environmental pollution (Chien et al., 2021; Cho et al., 2007).
Other studies, such as those by Chenran et al. (2019) and Danish et al. (2018), have examined
the positive effects of ICT on environmental quality, arguing that increased ICT use enhances
energy sector efficiency and reduces CO:2 and other greenhouse gas emissions.
Consequently, while ICT products impact CO2 emissions, it remains unclear whether this impact

is predominantly positive or negative.

Most prior research on the nexus between ICT and CO2 emissions has focused on
developed economies, which accounted for 79% of total emissions between 1850 and 2011
(Manu et al., 2024). However, this trend is shifting, as emerging and developing economies are
also contributing to environmental pollution. These countries are responsible for 63% of CO2
emissions, primarily due to their reliance on excessive mechanization and high energy

consumption for economic growth (Bastida et al., 2019).

In this paper, we address the challenges that hinder ICT-green technology-industrial
structure in SSA, recognizing the different resource endowments, economic development
levels, and manufacturing practices that can affect environmental outcomes. Previous studies
have primarily focused on developed nations; however, Africa's diverse regions have nof
received sufficient aftention in this context. Understanding the unique resource endowments
and geographical factors in these regions is essenfial for determining how ICT-green
technology-industrial structure can confribute to achieving environmental sustainability. This
approach provides a comprehensive perspective on ICT's potential to mitigate CO2emissions.
Furthermore, the inclusion of green innovation and industrial structures as intervening variables
is based on the argument that while linear additive models provide policy makers with insights
into how channels affect the outcome variables, intervening variables provide a non-linear
framework with which to assess how the effect of the channels on the outcome variables can
be moderated. Within the context of the present study, we argue that in the real world, ICT
does not influence environmental outcomes in isolation, not least, because their nexus can be
contingent on industrial structures and green innovation policies, as arficulated in Section 2.2.3

and Section 2.2.2, respectively.

Our research conftributes to the existing literature by integrating multiple factors—ICT,
green technology, and industrial structure—rather than focusing on isolated aspects, as seen
in previous studies (Asiedu et al., 2023; Opuala et al., 2023). Our findings show that ICT and
green innovation are critical for promoting environmental sustainability in SSA, with ICT

significantly reducing CO2 emissions and investments in green technology leading to further



reductions. However, the industrial structure in SSA presents challenges to achieving
sustainability. Furthermore, we find that the interaction effects between ICT, economic growth,
and foreign direct investment (FDI) suggest that combining ICT with economic growth and FDI
can significantly reduce both carbon and methane emissions. As a result, policymakers are
encouraged to decouple economic growth from environmental degradation by investing in
ICT and adopting regulations to promote sustainable investor practices. Employing panel
pooled mean group (PMG) and autoregressive distributed lag (ARDL) methods, we rigorously
analyse the relationship between ICT, green technology adoption, industrial structure, and
environmental sustainability in SSA. The employment of robust statistical techniques, combined
with real-world data, lends credibility and reliability to our conclusions. Moreover, we identify
a crifical research gap related to longitudinal studies that track these dynamics over time.
Filing this gap is essential for informing evidence-based policies to support sustainable
development in SSA. Through our research, we aim to shed light on the long-term trends and
interactions between ICT, green innovation, industrial structure, and environmental
sustainability, providing crucial insights for policymakers and stakeholders to address

environmental risks better.

The rest of the study is structured as follows: The theoretical review and the testable hypotheses
are covered in Section 2, while the data and corresponding methodology are discussed in
Section 3. The empirical results are provided in Section 4. The last section concludes with policy

recommendations.



2. Literature review

2.1. Theoretical review

Several theories examine the role of ICT in driving environmentally sustainable
development. In this study, we incorporate the Internet Growth and Contestable Market
Theory (IGCMT) and the Unified Theory of Acceptance and Use of Technology (UTAT). The
IGCMT suggests that expanding ICT, especially internet usage, can stimulate economic
growth and foster competition, which in turn supports environmental sustainability. The internet
lowers investment costs, reduces barriers to entry, and facilitates access to environmental
information, thereby promoting sustainable technologies (Asongu et al., 2017; Asongu & Le
Roux, 2017). ICT also addresses inefficiencies in managing natural resources by reducing

information gaps (Manu et al., 2024).

The UTAT highlights differences in tfechnology adoption and acceptance, driven by
individual behavior and intenfion. According to this theory, individuals' use of technology is
influenced by performance expectancy, perceived usefulness, and social factors (Ma et al.,
2024; Venkatesh et al., 2003). In the context of environmental sustainability, these factors can
impact the uptake of green fechnologies, with adoption varying across regions and
influenced by social norms. Additional research supports the positive link between ICT and
sustainable development. Haqg et al. (2024) show that broadband and internet usage are
positively associated with environmental initiatives. Asongu and le Roux (2023) and Asongu
and Odhiambo (2022) observe that in SSA, mobile-based applications have led to more
efficient resource management, reducing environmental impact through increased mobile

technology use.

Claus and Grimes (2003) present two key concepfts: transforming risk and optimizing
resource allocation. These views reinforce ICT’s role in reducing costs and enhancing the flow
of environmental information, promoting better resource utilization. ICT reduces operational
costs (Muto & Yamano, 2009) and lessens information asymmetry (Aminuzzaman et al., 2003),

making it a critical fool in advancing sustainability, especially in developing regions.

2.2 Empirical literature and testable hypotheses

2.2.1 the ICT-environmentally sustainable development nexus

The ICT-environmental sustainability nexus has burgeoned in recent years. Studies have
investigated various dimensions of this relationship, highlighting both the positive and negative
environmental impacts of ICT use. Studies have identified several ways in which ICT can
contribute to environmental sustainability. For instance, ICT enables the opfimisation of

resource use through smart grids, intelligent fransportation systems, and precision agriculture



(Geng et al., 2019). Additionally, ICT facilitates the transition to a circular economy by enabling
the sharing and reuse of resources through platforms and digital marketplaces (Geissdoerfer
et al., 2017). Conversely, ICT use also poses environmental challenges. The production, use,
and disposal of electronic devices contribute fo electronic waste (e-waste) generation, posing
risks to ecosystems and human health (Di Maio et al, 2017). Moreover, the energy
consumption associated with data centers, cloud computing, and high-speed internet
infrastructure has raised concerns about carbon emissions and environmental sustainability
(Andrae & Edler, 2015).

Studies have explored policy interventions and mitigation strategies fo harness the
positive aspects of ICT while mitigating its adverse environmental impacts. These include
measures to promote eco-design and sustainable manufacturing practices for electronic
devices, as well as inifiatives to increase energy efficiency in data centers and ICT
infrastructure (Paudel et al., 2023). Additionally, research emphasizes the importance of
regulatory frameworks and incentives to encourage the adoption of green ICT solutions and
promote sustainable consumption patterns (Curtis & Mont, 2020). Studies have also conducted
sectoral analyses to understand the environmental implications of specific digital technologies
and applications. For example, research has examined the environmental footprint of cloud
computing, e-commerce logistics, and digital platforms, highlighting opportunities for
improvement through innovation and policy interventions (Hoof et al., 2023; Theuer et al.,
2020). Cross-country studies have compared the environmental performance of countries with
varying levels of digitalization, providing insights into the complex relationship between ICT
development and environmental sustainability. These studies consider factors such as energy
consumption, carbon emissions, and waste generation, offering valuable perspectives for
policymakers and practitioners (Liu et al., 2023; Sadath & Acharya, 2017; Shen et al., 2023).

Based on these studies, we formulate the following hypothesis:

H1: The adoption of ICT in SSA countries is positively associated with improvements in

environmental sustainability.

2.2.2 The green technology-environmentally sustainable development nexus

The green technology-environmental sustainability nexus has been explored in
empirical literature for its potential to mitigate environmental degradation while fostering
sustainable development (African Development Bank Group, 2023; UNEP, 2021). Studies have
highlighted the role of renewable energy technologies, such as solar, wind, and hydroelectric
power, in reducing carbon emissions and dependence on fossil fuels (IPCC, 2023). Additionally,
advancements in energy efficiency technologies for buildings, transportation, and

manufacturing processes have been shown to contribute to resource conservation and



emissions reduction (Khan & Hou, 2021). Beyond energy, green technologies encompass a
wide range of innovations, including sustainable agriculture practices, waste management
solutions, and eco-friendly materials, each offering opportunities to address environmental
challenges (OECD, 2005). Empirical research has also examined the adoption and diffusion of
green technologies across different sectors and regions, identifying barriers and drivers of
implementation (Acemoglu, 2009). Policy interventions, such as subsidies, regulations, and
technology transfer initiatives, have been evaluated for their effectiveness in promoting the

adoption of green technologies and achieving environmental sustainability goals (Stern, 2004).

Overall, empirical studies emphasize the importance of green technology innovation
and deployment in transitioning toward a more sustainable and resilient future. Based on these

studies, we formulate the following hypothesis:

H2: The integration of green technology initiatives in SSA leads fo a significant reduction in

environmental degradation and promotes overall environmental sustainability in the region.

2.2.3 The industrial structure-environmentally sustainable development nexus

The industrial structure, characterised by market failures, policy inconsistencies, and
structural imbalances, can worsen environmental degradation by encouraging unsustainable
production and consumption patterns (Kumar et al., 2017; Smulders & de Nooij, 2003; Mishra,
2025). Studies have identified different industrial structures, including subsidies for polluting
industries, lax environmental regulations, and misguided incentives that promote resource
depletion and pollution (Barrett, 1994; Goulder, 1995; Kelly & Nembot Ndeffo, 2025). These
structural elements frequently lead to market inefficiencies, externalities, and resource
misallocation, which undermine efforts to achieve environmental sustainability (Dasgupta et
al., 2001; Li et al., 2025). Empirical research has examined the environmental impacts of
industrial structures across different sectors and regions, emphasising their detrimental effects
on air and water quality, biodiversity, and ecosystem integrity (Grossman & Krueger, 1995;
Kahn, 2010; Liu et al., 2025). Policy interventions aimed at addressing industrial structure, such
as environmental taxes, emissions trading schemes, and green procurement policies, have
been evaluated for their effectiveness in promoting cleaner production and fostering
environmental sustainability (Fischer & Newell, 2008; Fullerfon & Metcalf, 2001; Ke et al., 2025).
Overall, empirical studies underscore the need to address industrial structure as a critical step
toward achieving environmental sustainability and fostering green growth. Based on the

studies, we formulate the following hypothesis:



H3: Industrial structures, such as lax environmental regulations and subsidies to polluting
industries, exacerbate environmental degradation in SSA countries, thereby hindering overall

environmental sustainability efforts in the region.

In summary, the relationship between ICT, green technology, and industrial structure
plays a crucial role in achieving environmental sustainability in SSA. Studies highlight the dual
nature of ICT, offering opportunities for economic growth through ICT-driven innovations while
posing environmental risks such as electronic waste generation and energy consumption.
Similarly, research underscores the potential of green technologies like renewable energy and
sustainable agriculture in mitigating environmental degradation. Yet, challenges remain in
their widespread adoption due to barriers and policy gaps. Moreover, industrial structure,
including market failures and weak regulations, exacerbate environmental degradation in
SSA, necessitating policy interventions such as environmental taxes and emissions trading
schemes to promote cleaner production practices. Together, these findings emphasize the
need for integrated approaches that harness the benefits of ICT-green technology while
addressing industrial structure to achieve environmental sustainability in SSA (Barrett, 1994;
Acemoglu, 2009; Rogers, 2008; Fullerton, 2008; Kumar et al., 2017; Ofoeda et al., 2024; Wang
et al., 2025).

This paper contributes to the extant literature by tackling the challenges that impede the
relationship between ICT, green technology, and industrial structure in SSA, taking info account
the varying resource endowments, levels of economic development, and manufacturing
practices that caninfluence environmental outcomes. The sparse literature on Africa, coupled
with the continent’s distinctive resource endowments and geographical factors for a
worthwhile framework to ascertain the role of ICT-green technology-industrial structure in
achieving environmental sustainability. Additionally, the inclusion of industrial structures and
green innovation as intervening variables is predicated on the claim that, although linear
additive models tell policymakers how channels impact the outcome variables, intervening
variables offer a non-linear framework that allows them to evaluate how the channels' impact
on the outcome variables can be mitigated. In light of the current study, we contend that ICT
does not, in and of itself, have anisolated impact on environmental outcomes in the real world.
This is due, in part, to the fact that their relationship may depend on industrial structures and

green innovation policies discussed in the previous sections.



3. Data and methodology
3.1 Model specification

The main objective of this study is to investigate how the adoption of ICT in SSA is linked
to improvements in environmental sustainability, along with the roles of green innovation and
industrial structure. Following the analysis in Section 2, we propose a log-linear model to
examine the impact of ICT, green technology, and industrial structure on environmental

sustainability as apparent in Equation (1):

ESyy = a; + BUCT); + y(GT); + 6(IS); + Xi40 + &;¢ (1)

where ES;, represents the environmental sustainability measured by carbon and
methane emissions in country i in fime t. a; is the country-specific intercept. ICT represents by
ICT goods exports (ICTGE) and imports (ICTGI); this variable captures the role of digital frade in
influencing sustainability. Green Technology (GT) includes R&D expenditure, patent resident
(PR), and patent non-resident (PN), reflecting technological innovation's contribution to
environmental outcomes. Industrial Structure (IS) is proxied by industry-specific variables, such
as the share of GDP from industry (Industry GDP) and other industry-related indicators (Industry
current) to account for structural economic factors. X;, represents a vector of control variables.

6 is the corresponding parameter vector. g, is the error term.

3.2 Data

In our study involving 41 SSA countries, we avoided employing conventional panel data
methods such as pooled OLS, fixed effects, or random effects estimators due to various
limitations.! These methods do not accommodate the lagged dependent variables as
regressors, assume a uniform slope across all units, require variables to be devoid of cross-
sectional dependence, have the same order of integration, and encounter challenges in
controling for endogeneity. These constraints could compromise the accuracy of our
estimates in Equation (1), which examines the interplay between ICT, green technology,

industrial structure, and environmental sustainability. Therefore, we adopted alternative

! These countries include Angola, Botswana, Burkina Faso, Burundi, Cape Verde, Cameroon, Central African
Republic, Comoros, Democratic Republic of Congo, Republic of Congo, Cote d'Ivoire, Eswatini, Ethiopia, Gabon,
Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Madagascar, Malawi, Mali, Mauritius, Mozambique,
Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South
Africa, Sudan, Tanzania, Togo, Uganda, Zambia, Zimbabwe.



strategies to address these concerns and ensure the robustness of our analysis (Aluko &
Obalade, 2020; Baltagi, 2008; Christopoulos & Tsionas, 2004; Gasser et al., 2018; Lee et al., 2020).

The discussion underscores the necessity of addressing endogeneity, heterogeneous
slopes, lagged dependent variables, cross-sectional dependence, and mixed orders of
integration when estimating Equation (1). Hence, we have chosen the panel ARDL model for
both theoretical and practical reasons. Theoretically, this model offers more flexibility than
other linear estimators, providing consistent and efficient estimates in the presence of cross-
sectional dependence and mixed orders of integration (Bildirici, 2014). It also tackles
endogeneity by employing an optimal lag structure during estimation (Pesaran, 2021).
Practically, the panel ARDL model provides policymakers with valuable insights into the short-
run effects and long-run dynamics of ICT in the model (Kapetanios et al., 2011). Since the panel
ARDL model falls within the ARDL (p, g) family, we convert Equation (1) into a vector error-
correction model (VECM) for further analysis as captured in Equation (2):

, p—-1 , q-1 , 2
ACOZl’t = Q; + Hi(COZit_l - (piXit) + Z ”L]ACOth—] + Z 8,:]-Axit_]- + Eit ( )
j=1 j=0

We utilize the first-difference operator (A) to capture changes over time. The parameters ¢;
and §;; denofe the long-run dynamics and short-run effects of the variables, respectively. Of
particular interest is the error-correction term (ECT), represented by 6;., whose magnitude and
statistical significance are closely examined. A statistically significant 6, between 0 and -1
suggests the presence of a cointegrating relationship between carbon and methane
emissions and the explanatory variables.

To estimate Equation (2), we employ the PMG estimator, which strikes a balance by
accommodating heterogeneity in short-run individual-specific coefficients while maintaining
homogeneity in long-run dynamics for consistent results (Zribi & Boufateh, 2020). This feature
aligns well with our study's objectives, as long-run homogeneity can stem from advancements
in ICT-green technology-industrial structure (Aftiaoui et al., 2017), and other factors. Utilizing the
PMG estimator allows us to examine the relationship between ICT, green technology, industrial
structure, and environmental sustainability, considering the complexities inherent in this
relationship. Our adoption of the panel ARDL model and the PMG estimator enables us to
mitigate potential issues such as endogeneity, heterogeneous slopes, lagged dependent
variables, cross-sectional dependence, and mixed orders of integration that are prevalent in
such analyses.

Table 1 provides a comprehensive overview of the statistical summary pertaining to the
variables outlined in Equation (1), all of which have been transformed into natural logarithms.
Table 1 encapsulates a diverse array of measurements associated with economic and
environmental indicators within SSA. Notably, the average carbon emissions within the dataset

are recorded at approximately 1.779 units, signifying the quantity of carbon dioxide emitted.



Additionally, methane emissions, another notable contributor to greenhouse gases, exhibit an
average value of around 3.463 units. Turning to ICT, denoted by ICTGE and ICTGI, the region
demonstrates an average export value of about 0.688 units, juxtaposed with an import of
approximately 7.128 units, thus showcasing substantial engagement in ICT trade.

Moreover, the frequency of the sample is contfingent upon data availability during the
study period on green technology (GT) and patent applications2. To handle missing data in
the R&D expenditure and patent application variables, we applied a data pre-processing
technique using STATA (version 18) software. Specifically, we utilized the replace’' command
with an 'if condition to fill in missing values with adjacent non-missing values within each group
identified by the 'id' variable. This approach maintains data continuity while preserving the
dataset's grouping structure. By employing this method, we aimed to mitigate the impact of
missing data on our analysis and ensure the robustness of our results. This approach is supported
by the observed average R&D expenditure and patent activity—both by residents and non-
residents—averaging around 1.686, 0.726, and 0.896 units, respectively. These metrics not only
underscore investments in innovation and technological advancement but also signify a
thriving ecosystem conducive to intellectual property creation. Additionally, the industrial
sector's contribution (IS) fo GDP stands at approximately 1.290%, franslating to about 1.343
units of GDP. The average GDP for the region is estimated at approximately 3.077 units, with a
total population figure of roughly 6.897 units.

Finally, the region's allure to external investors is evidenced by the average foreign
direct investment (FDI) of around 1.399 units, illustrating a keen interest from external
stakeholders in the economic prospects offered by SSA. Overall, Table 1 provides a glimpse
into the economic and environmental landscape of the region, shedding light on key

indicators and trends pivotal for understanding SSA's development trajectory.

Table 1. Data and descriptive statistics

Variables Measurements Mean  Std. Min  Max Sources
dev.

CO2 Carbon emissions 1.779 0.255 0.566 1.993 World
Bank
CHA4 Methane emission 3.463 0.685 1.446 5.132 World
Bank
ICTGE Information and communication 0.688 0.447 0.002 1.789  World
technology goods exports Bank
ICTGI Information and communication 7.128 0.843 3.697 9.018 World
technology goods imports Bank

2The STATA (18) command effectively fills in missing data in the R&D expenditure and patent
variables by replacing gaps with adjacent non-missing values within each group defined by the
"id" variable (bysort id: replace R&D expenditure = R&D expenditure[ n+1] if missing (R&D
expenditure)).



R&D R&D expenditure 1.686 0.492 0.193 2.764  World

Bank
PR Patent resident 0.726 0.624 0.000 3.256 World
Bank
PN Patent non-resident 0.896 0.741 0.000 3.962 World
Bank
Indus Industry (including construction), value 1290 0.376 0.034 1.927 World
(GDP) added (% of GDP) Bank
Indus Industry (including construction), value 1.343 0.407 0.025 1.930 World
(current) added (current LCU) Bank
GDP GDP 3.077 0.412 2392 4224 World
Bank
POP Total population 6.897 0.719 4897 8340 World
Bank
FDI Foreign direct investment 1.399 0.392 0.025 1972 World
Bank

Note: World Bank data from World Development Indicators. Std.dev: Standard deviation. Min:
Minimum. Max: Maximum.

3.3 Robustness tests

In the previous section, we found that the ICT-green technology-industrial structure have a
positive impact on environmental sustainability. However, our analysis assumed a linear
relationship between these factors and emissions, potentially overlooking nonlinear effects. To
address this, we infroduce squared fterms for the ICT-green technology-industrial structure as

additional variables in the Equation (3) below:

ES;y = a; + BUCT)? + y(GT)Z + US)E + X0 + & (3)

By including the squared terms of ICT, GT, and IS, the equation allows for the examination of

potential nonlinear effects on environmental sustainability in SSA.

While we have previously disregarded nonlinearity within the ICT-green technology-
industrial structure-emissions relationship, it is plausible that other forms of nonlinearity may exist
in Equation (1). To examine this possibility, we turn to two widely recognized hypotheses in
environmental economics: the EKC and Pollution Haven Hypothesis (PHH). To test these
hypotheses empirically, we introduce the squared terms of GDP and FDI into Equation (1) as

follows in Equation (4):

ES; = a; + BUCT) ;e + y(GT)y + 8US) i + A(GDP);. + A(GDP)}, + n(FDI);, + n(FDI)}, + X0 +
it (4)

Intuitively, if the coefficient A is positive and the coefficient n is negative. Given that both are
statistically significant, it indicates that there is a curved relationship between GDP and
emissions, resembling an inverted U-shape. This confirms the EKC. Similarly, if the coefficient p

is positive and the coefficient v is negative. Since both are statistically significant, it suggests a



similar curved relationship between FDI and emissions, supporting the idea of the Pollution
Haven Hypothesis (PHH).

So far, we have established the direct impact of ICT-green technology-industrial
structure on emissions. Yet, these factors could also indirectly affect emission levels through
interaction between green technology and GDP or between green technology and FDI. To
consider these mediation effects, we adjust Equation (1) by incorporating an inferaction ferm

as follows in Equations (5a) to (5f):

€02 = a; + BUCT);; + Y(ICT X GDP) + X0 + €;; (5a)

€02y = a; + BUCT); + Y(ICT X FDI); + X0 + & (5b)
CO02; = a; + B(GT);r + Y(GT X GDP);; + X0 + ;¢ (5¢)
C02; = a; + B(GT);; + Y(GT X FDI);; + X0 + €54 (5d)
CO02; =a; + B(US); + YIS X GDP); + X0 + €54 (5e)
CO02;; = a; + B(IS); + Y(GT X FDI) + X0 + &4 (5f)

Equations (5a-b) infroduce an interaction term between ICT and GDP (ICTxGDP) and between
ICT and FDI (ICTxFDI). This interaction term captures the combined effect of ICT and GDP and
ICT and FDI on CO2 emissions. Equation (5¢-d) follows a similar structure as Equation (5) but
focuses on the interaction between green technology and GDP (GTxGDP) and between
green technology and FDI (GTxFDI). This interaction term captures the combined effect of
green technology and GDP and green technology and FDI on CO2 emissions. The remaining
equations (5e-f) extend this approach to include interaction terms between the industrial
structure (IS) and GDP (or FDI), denoted as (ISxGDP) or (ISxFDI), respectively. These terms

capture the combined impact of the industrial structure and GDP (or FDI) on CO2 emissions.



4. The Dynamics of ICT, Green Technology, and Industrial Structure on Environmental

Sustainability

Table 2 reports the dynamics of ICT, green technology, and industrial structure on
environmental sustainability, particularly regarding CO2 and methane emissions. Firstly,
regarding ICT, the statistically significant negative coefficients observed for both exports
(ICTGE) and imports (ICTGI) of ICT goods in relation to CO2 emissions (-0.083 and -0.025)
highlight an important trend. It suggests that countries with a more pronounced involvement
in either exporting or importing ICT goods tend to exhibit lower levels of CO2 emissions. The
significance levels for these coefficients are af the 5% and 1% levels, respectively. Similarly, for
methane emissions, the negative coefficients of ICTGE and ICTGI are also statistically
significant at the 1% level (-0.509 and -0.576), suggesting that increased digital economic
activities lead to decreased methane emissions, further contributing to environmental
sustainability. These values suggest that higher levels of ICT trade are associated with reduced
CO2 and methane emissions within SSA, indicating a positive effect on environmental
sustainability. This finding is consistent with studies documenting the transformative impact of
ICT, characterized by the widespread adoption of ICTs on global commerce, communication,
and social interactions (Asongu & Le Roux, 2023; Brynjolfsson, 2014; Manyika, 2016). These
studies emphasize the role of ICT in enhancing efficiency and reducing emissions through

digital solutions.

Moving to green technology, investments in research and development (R&D) and
resident patents show significant negative coefficients concerning CO2 emissions (-0.091 and
-0.017). These values indicate that higher levels of domestic innovation in green technology
are associated with reduced CO2 emissions within SSA, thus positively impacting environmental
sustainability (Chen et al., 2023; Manu et al., 2022). The significance levels for these coefficients
are denoted atf the 5% level. However, the coefficient for non-resident patents shows a positive
relationship with CO2 emissions (0.008), albeit at a slightly weaker significance level of 10%. This
is consistent with literature suggesting that non-resident patents often reflect foreign
technologies that may not align with local environmental priorities, as highlighted by Attiaoui
et al. (2017).

In terms of industrial structure, while industrial output as a percentage of GDP (Indus
GDP) positively influences CO2 emissions (0.111), the current industrial output (Indus current)
negatively affects emissions (-0.041). The significance level for the coefficient of Indus current
is denoted at the 5% level. These results suggest that changes in the industrial composition

tfowards less carbon-intensive sectors contribute to lowering CO2 emissions, thereby positively



impacting environmental sustainability in SSA. These findings align with Kapetanios et al. (2011),

who noted the importance of structural shifts in reducing emissions in developing economies.

Turning to economic growth, the positive coefficients associated with GDP across
various models underscore the significant role of economic growth in driving CO2 emissions in
the region. As GDP increases, so do carbon emissions, reflecting the reliance of SSA countries
on carbon-intensive industries for economic development. This suggests that while economic
growth is essential for development in SSA, it also poses challenges in ferms of environmental
sustainability, requiring policymakers to balance economic objectives with environmental
concerns. This observation is supported by studies such as those of Manyika (2016), who

emphasize the need for green growth strategies in developing economies.

Regarding FDI, the mixed impact observed suggests a refined relationship between
foreign investment and CO2 emissions in SSA. While some models show negative coefficients
for FDI, indicating a potential mitigating effect on emissions, others exhibit positive coefficients,
suggesting that certain types of foreign investments may contribute to increased emissions.
This highlights the need for scrutiny of the types of investments attracted to SSA and the
environmental implications they entail. Policymakers should aim to attract green and
sustainable investments that promote economic growth while minimizing environmental

degradation, a recommendation supported by Chen et al. (2023).

Additionally, the positive coefficients associated with POP indicate that population
growth is a significant driver of CO2 emissions in SSA. As the population increases, so does the
demand for goods and services, leading to higher levels of consumption and subsequent
carbon emissions. This underscores the importance of addressing population growth alongside
economic development to achieve sustainable outcomes in SSA. This finding aligns with the
literature, which links demographic pressures to heightened emissions and environmental

challenges (Brynjolfsson, 2014).

Turning fo methane emissions, GDP, represented by ifs positive coefficients across
various models, indicates a positive association with methane emissions. As GDP increases,
methane emissions also tend to rise, suggesting that economic growth confributes to higher
levels of methane production, possibly through increased industrial activities, agricultural
practices, or energy consumption. This underscores the challenge of balancing economic
development with environmental conservation efforts in SSA. On the other hand, the negative
coefficients associated with FDI suggest a mitigating effect on methane emissions. Countries
receiving higher levels of foreign direct investment tend to exhibit lower methane emissions,
indicating that certain types of foreign investments may promote environmentally friendly

practices or technologies that reduce methane production. This highlights the potential for



foreign investment to contribute positively to environmental sustainability in SSA, provided that

investments align with green development objectives (Kapetanios et al., 2011).

Population (POP) also shows a mixed impact on methane emissions, with positive
coefficients indicating a positive association in some models and negative coefficients
suggesting a mitigating effect in others. The positive association implies that population growth
contributes to increased methane emissions, possibly due to higher demand for energy, food
production, and waste generation. Conversely, the negative association suggests that
population growth may lead to technological advancements or changes in consumption
patterns that reduce methane emissions. This underscores the need for comprehensive
populafion management strategies that consider both demographic frends and

environmental impacts.

Contextualizing the results for SSA highlights the positive impact of ICT-green
tfechnology innovatfion and shifts in industrial structure on environmental sustainability,
particularly regarding CO2 and methane emissions. Increases in ICT goods, along with
investments in green technology research and development, are associated with reduced
COz emissions. Moreover, transitions foward less carbon-intensive industrial sectors contribute
to lowering CO2emissions. However, economic growth, represented by GDP, tends to increase
both CO2 and methane emissions, emphasizing the challenge of balancing development with
environmental conservation. Foreign Direct Investment (FDI) shows a mixed impact on
emissions, while population growth plays a significant role in driving emissions, especially COa.
These observations resonate with broader empirical findings that emphasize the complex
interplay between economic activities and environmental outcomes in SSA (Chen et al., 2023;
Manu et al., 2022).



Table 2.

The effects of ICT-green technology-industrial structure on environmental sustainability, by estimator

Dependent var.

Carbon emissions

Methane emissions

Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (1) (12) (13) (14)
(a). Long-run
dynamics
ICTGE -0.083*** -0.509**

(0.043) (0.076)
ICTGI -0.025%** -0.576***

(0.051) (0.118)
R&D -0.091** -0.782**
(0.061) (0.270)
Patent resident -0.017** 0.086**
(0.086) (0.045)
Patent non-resident 0.008** 0.147%**
(0.011) (0.029)
INndus (cor) 0.007** 0.111
(0.012) (0.095)
INAUS (current) -0.041** -0.450**
(0.017) (0.240)

GDP 0.033***  0.050*** 0.032* 0.192** 0.001** 0.130*  0.141* 0.085*  0.138** 0.116** 0.068 -0.305*  -0.101*  -0.030

(0.007) (0.010) (0.018) (0.076) (0.096) (0.082) (0.060) (0.030) (0.042) (0.039) (0.115) (0.179) (0.030) (0.026)
FDI -0.032 -0.200** 0.019** 0.008**  0.018** 0.044** -0.428*** -0.116**  -0.127* -0.183**  -0.105** 0.074**  0.060*** 0.054***

(0.026) (0.067) (0.012) (0.017) (0.033) (0.044) (0.116) (0.087)  (0.071) (0.116) (0.319) (0.025) (0.015) (0.015)
POP 0.500** 0.388** 1.467*** 4.293* 0.099** 0.500**  0.388** 0.467***  0.293**  0.056** 0.045** 0.027** 0.261**  0.024**

(0.619) (0.399) (0.785) (2.007) (0.065) (0.619) (0.399) (0.785)  (2.007) (0.018) (0.013) (0.017) (0.08¢) (0.068)
(b). Short-run effects
ECT -0.062 - 0.029*** -0.031*** - 0.055** - -0.011** - - - - -0.040*

(0.066)  (0.035) (0.231)  (0.034) 0.044** (0.034) 0.058***  0.063*** 0.037*** -0.088** .0.072** -0.080*** 0.093*** (0.020)

(0.048) (0.097) (0.067) (0.066) (0.072) (0.065) (0.684) (0.428)

A (ICTGE) 0.683*** 0.144*

(0.064) (0.057)
A (ICTGI) 0.043 0.502

(0.072) (0.514)




A(R&D) 0.410% 0.371%
(0.107) (0.124)
A(PR) -0.230**
(0.128)
A(PN) 0.806** 0.006*
(0.591) (1.176)
A (Indus (Gor)) 3.967 -0.034
(2.844) (0.030)
A (Indus (current)) 0.001 0.101
(0.018) (0.071)
A(GDP) 34147 0869  0.148* 0020 -0.660* 0.957*** -0.614***  0.194** 0217 0.164**  0.133  -1.532%%% -].490%** -].581%*
(0.442)  (0.155)  (0.060)  (0.199) (0.372) (0.126) (0.608)  (0.060) (0.042)  (0.035)  (0.088)  (0.222)  (0.103)  (0.112)
A(FDI) 22007 0035  -0.439%* 0048 0383 0.112 0083  -1.970* 1.020%* 0902*** 0.839*** 0748 0257  0.393"*
(0.436)  (0.022)  (0.099)  (0.034) (0.247) (0.281) (0.090)  (0.975) (0.102)  (0.043)  (0.033)  (0.054)  (0.223)  (0.101)
A(POP) 0.869%*  0044*  0.436™ 0099 -0319 -0.148* 0086  0.401** 0728** -0.195% -0087* -0.136** -0.079  0.08]
(0.155)  (0.019)  (0.129)  (0.071) (0.226) (0.059) (0.357)  (0.066) (0.195)  (0.066)  (0.048)  (0.034)  (0.055)  (0.071)
Constant 39927 20677 12.080"% AT o, ‘;’]'4]5;3” 2(']63;9) 0.189% 0.221%% (.232%*  7.998%*  4537%* 3555 1135
4452 (18.458) (10.608) (3826) i ' ' (0.024)  (0.037) (0.148)  (1.079)  (0.561)  (0.502)  (3.420)
Log likelihood 154129 154848  1559.66 154001 1541.2 1548.68 1559.66  1541.29 1548.68 1559.66 154001 154129  1548.68 1559.66
9
Observations 1025 1,025 1,025 1025 1025 1025 1,025 1025 1025 1025 1,025 1,025 1,025 1,025

Note: To conserve space the interpretation is based on (a) the long-run dynamics and (b) represented bold captures the short run, the error
correction terms (ECT) for both CO2 and methane emissions exhibit negative coefficients (-0.062 for CO2 emissions and -0.063 for methane
emissions), suggesting a corrective mechanism that leads to reduced emissions. The significance level for the ECT coefficients is denoted at the
1% level. These findings underscore the relationship between economic activities, technological advancements, and environmental outcomes in
Sub-Saharan Africa, emphasizing the importance of fostering sustainable practices for long-term environmental sustainability in the region. The
optimal lag selection was based on the iterated log likelihood ratio computed by the xtpmg command in Stata 18. *** and ** indicate the 1% and

5% level of significance, respectively. A is the difference operator. ECT denotes the error correction term.



4.1. The effect of ICT on environmentally sustainable development

Table 3 presents the results of the analysis examining the effects of ICT on environmental
sustainability in SSA, specifically focusing on CO2 and methane emissions. The analysis
incorporates both quadratic and interaction effects, offering a comprehensive understanding
of how ICT influences environmental outcomes in the region. Regarding CO2 emissions, ICT
goods exports (ICTGE) and ICT goods imports (ICTGI) show significant negative relationships
with CO2 emissions. The coefficient for ICTGE is -0.963, suggesting that higher levels of ICT
exports are associated with reduced CO2 emissions in SSA. This is supported by the findings of
Geng et al. (2019), who highlight the role of digital technologies, such as smart grids and
intelligent tfransportation systems, in reducing emissions. Additionally, the non-linear relationship
captured by the squared term of ICTGE (-0.188) suggests diminishing returns as ICTGE levels
increase. Similarly, ICTGI has a significant negative relationship with CO2 emissions, with a
coefficient of -0.280, implying that countries importing more ICT goods tend to have lower CO2
emissions. The diminishing refurns indicated by the squared term of ICTGI (-0.040) reinforce this
relationship, aligning with findings by Liu et al. (2023), who emphasize the potential of ICT trade
in mitigating environmental impact. Thus, these results underscore the potential of leveraging
both ICT exports and imports to reduce CO; emissions and promote environmental

sustainability in SSA.

The relationship between ICT and methane emissions in SSA presents a more refined
picture. While the coefficient for ICTGE is positive (0.104), it is statistically insignificant, indicating
a weak relationship between ICT goods exports and methane emissions. However, the
negative coefficient for the squared term of ICTGE (-0.038) suggests a non-linear relationship,
implying that while higher ICT goods exports might initially increase methane emissions, this
effect diminishes as ICT exports rise. In confrast, ICTGI shows a significant positive relationship
with methane emissions (0.267), indicating that higher levels of ICT goods imports are
associated with increased methane emissions in SSA. The weak association between ICTGl and
methane emissions is further reflected in the non-linear relationship captured by the squared
term (-0.002). These findings confradict the study by Geissdoerfer et al. (2017), who argue that
ICT can facilitate a circular economy by promoting resource-sharing platforms and digital

marketplaces, thus reducing overall emissions.

Further analysis reveals a significant positive relationship between GDP and CO:
emissions in SSA, with a coefficient of 0.712. This suggests that as GDP levels increase, CO2
emissions also rise, largely due to the increased demand for carbon-intensive industries in SSA's
developing economies. The squared term of GDP also indicates diminishing returns, which is
consistent with the Environmental Kuznets Curve (EKC) hypothesis, suggesting that as countries

reach higherincome levels, the rate of increase in emissions slows down (Grossman & Krueger,



1995). In contrast, FDI shows a non-significant short-term impact but becomes significantly
positive in the long term, indicating that foreign direct investment gradually contributes to
environmental degradation. These results underscore the need for policies that balance
economic growth and environmental sustainability. Policymakers should focus on decoupling
economic growth from environmental degradation, such as by investing in green technologies

and promoting renewable energy sources (Chen et al., 2023).

The interaction effects between ICT frade and economic indicators provide further
insights into their combined impact on both carbon and methane emissions. The significant
negative coefficient for the interaction between ICTGE and GDP (-0.367) suggests that the
combination of increasing ICT goods exports and higher GDP levels leads to a reduction in
carbon emissions. This supports the findings of Hoof et al. (2023) and Theuer et al. (2020), who
argue that economic growth, when coupled with ICT trade, can help mitigate environmental
impacts. Similarly, the significant negative coefficient for the interaction between ICTGI and
FDI (-0.366) indicates that the combination of importing ICT goods and attracting foreign direct
investment leads to a substantial reduction in carbon emissions. Di Maio et al. (2017) also
highlight the positive environmental outcomes of combining ICT imports with foreign

investment, particularly in the context of sustainable development.

In tferms of methane emissions, the negative coefficients for the interaction terms reveal
a similar frend. The interaction between ICTGE and GDP (-0.257) suggests that increasing ICT
goods exports, coupled with higher GDP, leads to reduced methane emissions, contributing
tfo environmental sustainability. Paudel et al. (2023) support this by noting the potential of ICT
fo drive environmental benefits through resource optimization. Furthermore, the highly
significant negative coefficients for the interactions between ICTGE and FDI (-0.393) and ICTGI
and GDP (-0.401) indicate that these combinations also lead to reductions in methane
emissions. The highly significant negative coefficient for the interaction between ICTGI and FDI
(-0.728) highlights a substantial reduction in methane emissions when countries increase ICT
imports and attract higher levels of foreign investment. Curtis and Mont (2020) argue that
foreign investment in clean technologies can facilitate such reductions. Overall, these findings
demonstrate the synergistic effects of combining ICT frade, economic growth, and foreign
investment to mitigate both carbon and methane emissions, ultimately contributing to

environmental conservation and sustainability in SSA.

In contextualizing the relationship between ICT and environmental sustainability, the
results suggest that higher levels of ICT goods exports and imports are associated with reduced
CO2 emissions, emphasizing the potential of ICT trade as a tool for environmental mitigation.

However, the impact on methane emissions is more nuanced, with ICTGE showing a weak



relationship and ICTGI demonstrating a positive association. The positive relationship between
GDP and CO:2 emissions further highlights the need for strategies that decouple economic
growth from environmental degradation. Additionally, FDI's long-term contribution to
environmental degradation underscores the importance of policies that promote sustainable
investment practices. The interaction effects between ICT tfrade and economic indicators
reinforce the synergistic potential of ICT, economic growth, and foreign investment in
mitigating emissions, as emphasized by Liu et al. (2023), Shen et al. (2023), and Sadath and
Acharya (2017). These findings collectively underscore the importance of aligning ICT
development with sustainable policies to ensure that the growth of the ICT sector contributes

positively to environmental sustainability in SSA.



Table 3. The effect of ICT on environmental sustainable development

Dependent var.

Carbon emissions

Methane emission

Model (1) (2) (3) (4) (5) (6) (7) (8) (?) (10) (11) (12) (13) (14)
(a). Long-run
dynamics
ICTGE - 0.033™* 0.004™  0846™ 0.155™ 0.104 0.194% 0217 0.164** 0.133
(()6?827) (0.13¢)  (0.150)  (0.232) (0.140) (0.187) (0.060) (0.042)  (0.035) (0.088)
ICTGE?2 . 0038
0072 (0.048)
ICTGI -0.280%+* 0.267*
(0.684) (0.137)
ICTGR -0.040* -0.002
(0.020) (0.044)
GDP 0.712% 0(.133**)* ((3.034*; 028 0305 04eH
. 0.193)  (0.127 ' ' '
0.199) (0.134)  (0.046)  (0.066)
GDP2 0,476 0.416%
(0.446) (0.088)
FDI 0040 0034  0.126% ;
(0.048) (0.053)  (0.033) 0353% 07327 oo
. 02000 ("7
(0.239) :
FDI2 0.150%% i
(0.063) 1,663
(0.504)
ICTGE x GDP -0.367% -0.257
(0.017) (0.223)
ICTGE x FDI -0.306** 10.393%%
(0.271) (0.101)
ICTGI x GDP 03677 0,401




ICTGI x FDI
POP
(b). Short-run

effects
ECT

A (ICTGE)

A (ICTGE?)

A (ICTGI)
A (ICTGR)
A (GDP)

A (GDP?)

A (FDI)

A (FDP2)
A (ICTGE x GDP)

A (ICTGE x FDI)

0.148**
(0.064)

0.076**
*
(0.050)
0.123
(0.095)

0.300**
(0.073)

0.029
(0.040)

0.294**

*

(0.064)

0.058**
(0.033)

-0.107***
(0.132)

0.052
(0.088)
-0.294*
(0.064)
0.006
0.034

-0.300%
(0.070)

0.014**
(0.028)

0.038*** 0.292%**

(0.129)

-0.033
(0.024)
-0.193
(0.122)

-0.268*
(0.147)

0.052
(0.088)

1.526%%% 1,100
(0.218)  (0.109)

-0.034%**
0.1a4) (0034
0.047*
(0.083)

0.091*

(0.161)

(0.017)

0.831%**
(0.142)

0.085***
(0.064)

-0.366*+*
(0.018)
0.584*
(0.290)

0.010***
(0.021)

0.081**
(0.071)

0.065**
*
(0.134)
-0.017
(0.034)

0.076*
(0.042)

-0.338*
(0.158)

0.245*
(0.136)

0.189***
(0.024)

-0.081%**
(0.233)

0.129*
(0.068)
0.187**
(0.060)
-0.025
(0.140)

0.006
(0.123)

0.221%*
(0.037)

0.055** 0.098**

(0.261)

0.320**
(0.121)
0.286**
(0.037)

0.313*
(0.110)

0.140*
(0.061)

(0.066)

0232  0.191  0.719%*
(0.148)  (0.255)  (0.174)

*kk
-(()60: 219) 0.002%**
(0.299) ' (0.158)
0.310**
(0.119)
0.022*
(0.07¢)

-0.728%
(0.195)
0.552%+
(0.161)

0.023%**
(0.218)




A (ICTGIx GDP) -0.225* 0.699*

(0.096) (0.145)
A (ICTGI x FDI) 0.161* 0.245*
(0.087) (0.136)
A(POP) 0.349*  0.448**  0.588*** 0.600***  0.225* 0.161* 0.166* 0.003*  0.092**  0.120** 0.166™  0.495*  0.410** 0.515*
(0.117)  (0.156)  (0.080)  (0.133)  (0.096) (0.087) (0.094) (0.058)  (0.058) (0.043) (0.052) (0.187)  (0.154)  (0.153)
Constant 0.412  0.127 0.146  -0.102 1.332 2.538%* 2.944%* 2378*  -1.292  -0.808 -0.615  0.478*  0.443"* 0.467**
(0.935)  (0.611)  (0.488) (1.466)  (0.935) (0.469) (0.683) (0.784)  (0.824) (0.522) (1.066) (0.191)  (0.111)  (0.135)
Log likelihood 1574.4 1581.05 1587.59 1563.99 1584.34  1568.72 1561.40 1574.4 1581.05 1587.5 1563.9 1584.34 1568.72 1561.40

7 7 9 9

Observations 1,021 1,021 1,021 1,021 1,021 1,021 1,221 1,021 1,021 1,021 1,021 1,021 1,021 1,021

Note: To conserve space the interpretation is based on (a) the long-run dynamics and (b) represented bold captures the short run, the error
correction terms (ECT) for both CO2 and methane emissions exhibit negative coefficients (e.g. -0.076 for CO2 emissions and -0.065 for methane
emissions), suggesting a corrective mechanism that leads to reduced emissions. The significance level for the ECT coefficients is denoted at the
1% level. These findings underscore the relationship between economic activities, technological advancements, and environmental outcomes in
Sub-Saharan Africa, emphasizing the importance of fostering sustainable practices for long-term environmental sustainability in the region. The
optimal lag selection was based on the iterated log likelihood rafio computed by the xtpmg command in Stata 18. *** and ** indicate the 1% and
5% level of significance, respectively. A is the difference operator. ECT denotes the error correction term.



4.2. The effect of green technology on environmental sustainable development

Table 4 presents the results of the effects of green technology on environmental
sustainability, specifically focusing on CO2 and methane emissions in SSA. The analysis includes
quadratic and interaction effects to provide a comprehensive understanding of how green
technology variables influence environmental outcomes in the region. The results show that
investment in R&D for green technologies significantly reduces CO2 emissions, as indicated by
the negative coefficient for R&D (-0.963). This suggests that higher investment in R&D,
particularly in eco-friendly technologies, is linked to a reduction in the region’s carbon
footprint. The negative coefficient for the squared term of R&D (-0.188) implies a non-linear
relationship, where initial increases in R&D spending led to substantial reductions in emissions.
Still, this effect diminishes as R&D spending rises further. These findings align with the work of
Donkor et al. (2022), who emphasize the role of R&D in driving long-term environmental

benefits.

Regarding non-resident patent applications (PN), the negative coefficient (-0.280)
suggests that higher levels of innovation or patent activity in green technology are associated
with a reduction in CO2 emissions in SSA. However, the squared term of PN (-0.040) indicates a
diminishing effect beyond a certain threshold of innovation activity, supporting the notion that
the relationship between innovation and emissions reduction is non-linear. Conversely, patent
registrations (PR) exhibit a positive coefficient (0.245), suggesting that higher levels of
innovation activity, reflected by increased patent registrations, confrioute to greater
environmental sustainability and the reduction of CO2 emissions. The positive coefficient for
the squared term of PR (0.343) further indicates that as patent registrations increase, the
impact on emissions reduction accelerates (Musah et al., 2020). These findings highlight the
importance of fostering both non-resident and resident innovation in green technologies as a

means to mitigate environmental damage in the region.

In terms of methane emissions, the negative coefficient for R&D expenditure (-0.124)
suggests that higher investments in green technology research also contribute to a reduction
in methane emissions. Similarly, the negative coefficient for the squared term of R&D (-0.199)
reflects a diminishing effect as R&D spending increases, suggesting a non-linear relationship
between R&D investment and methane emissions reduction. The results for patent applications
(non-resident) (PN) show a similar tfrend, with the negative coefficient for PN (-0.041) indicating
that higher levels of innovation in green technologies are linked to lower methane emissions.
However, the squared term of PN (0.260) suggests diminishing returns with further innovation.
Resident patent registrations (PR) also have a negative coefficient (-0.060), suggesting that
higher innovation activity through patents results in decreased methane emissions. Meanwhile,

the positive coefficient for the squared term of PR (0.238) again indicates diminishing returns.



These findings corroborate the work of Appiah et al. (2023) and Pan et al. (2023), who highlight

the role of innovation in driving reductions in greenhouse gas emissions.

The interaction effects between green technology variables (R&D, PN, PR) and
economic indicators (GDP, FDI) provide further insights info the combined impact of green
technology and economic growth on CO2 and methane emissions. The highly significant
negative coefficient for the interaction between R&D and GDP (-0.367) suggests that
combining increased investment in green technology R&D with higher GDP levels leads to a
substantial reduction in CO2 emissions. This result aligns with the findings of Haibo and Manu
(2022), who assert that innovation combined with economic growth can help mitigate carbon
emissions. However, the coefficient for the interaction between R&D and FDI is noft statistically
significant, indicating that the combination of R&D expenditure and foreign direct investment
does not have a notable impact on CO2 emissions. Moving to patent applications, the
negative coefficients for the interactions between PN and GDP (-0.367) and PN and FDI (-
0.366) suggest that combining innovation activity in green technologies with economic growth
or foreign investment is effective in reducing CO2 emissions. However, the coefficient for the
interaction between PR and GDP is not statistically significant. In contrast, the negative
coefficient for PR and FDI (-0.313) suggests that combining resident patent registrations with
higher foreign investment results in a reduction in CO2 emissions, contributing to environmental

sustainability in SSA.

When examining methane emissions, the statistically significant positive coefficient for
the interaction between R&D and GDP (0.053) indicates that the combination of increased
R&D expenditure and GDP growth leads to higher methane emissions in SSA. This suggests
potential trade-offs between economic growth and environmental sustainability, with R&D
spending potentially contributing to increased methane emissions in the short term.
Conversely, the statistically significant negative coefficients for the interactions between R&D
and FDI (-0.050), PN and GDP (-0.259), and PN and FDI (-0.043) indicate that combining R&D
expenditure or patent applications with higher GDP or FDI leads to a decrease in methane
emissions. While the coefficient for the interaction between PR and GDP (-0.008) suggests a
slight decrease in methane emissions, the coefficient for the interaction between PR and FDI
(0.061) is not statistically significant, indicating that combining resident patent registrations with

foreign investment does not significantly affect methane emissions.

Contextualizing investments in green technology, including R&D expenditure and
patent applications, reveals that they significantly contribute to environmental sustainability
by reducing both CO2 and methane emissions. Higher investment in R&D for green

technologies correlates with decreased CO2 emissions, underscoring the importance of



innovation in driving environmental progress. Similarly, both non-resident and resident
innovation activities lead to a reduction in CO2 emissions, highlighting the role of technological
advancements in mitigating environmental impact. The interactions between green
technology variables and economic indicators further emphasize the combined impact of
innovation, economic growth, and foreign investment on emissions. However, the relationship
between R&D expenditure and GDP shows a potential frade-off, as it appears to increase
methane emissions. Nonetheless, infegrating green technology with economic growth or
foreign investment generally yields notable reductions in methane emissions, demonstrating
the importance of holistic approaches to address environmental challenges in SSA (African
Development Bank Group, 2023; UNEP, 2021).



Table 4. The effect of green technology on environmental sustainable development

Dependent Carbon emissions Methane emissions
var.
Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)  (13) (14 (15) (16) (17) (18)
(a). Long-run
dynamics
R&D . 0.033* 0.004* 0.846* 0.155** " - - -
0.963* o o o (0.140) 0'332* O'Mi - 0.326* 0.222 0.155 0116 - -
* (0.136 (0.150 (0.232 (0,042 (0.04 0.124** * ok * (611 0.326** 0.222**
(0.067 ) ) ) ' i (0.197) (0.108 (0.06 (0.08 . (0.108) (0.069)
) 2) 9 0)
) ) ) ?)
R&D?2 -
0.188* -
* 0.199**
(0.072 (0.151)
)
PN -0.280*** -0.041
(0.684) (0.071)
PN2 0.260**
-0.040* *
(0.020) (0.064)
R 0.245° 0060
(0.136) ')
PR2 0.238*
0.343*** *
(0.052) (0.124
)
GDP 0.712* 0.133**  0.034** o 0.105%
o (0.193)  (0.127) 0.125* 0'033 *
(0.199 (0.118) (0.055) (0.078

)




GDP2

FDI

FDI2

R&D x GDP

R&D x FDI

PN x GDP

PN x FDI

PR x GDP

2.47 6%+
(0.446)
0.126***
(0.033)

-0.040
(0.048
)

0.034
(0.053)

0.150%*
(0.063)

0.367*

(0.017
)

-0.306
(0.271

0.367*

)k

(0.017

-0.366***
(0.018)

0.006
(0.123

-0.053
(0.041)

0.054**
(0.016)

0.187
(0.209

0.052*
(0.024

0.144*
(0.073

0.053*

(0.040

0.050

(0.06
9)
0.259
(0.19
0)
0.043
(0.06
9)

0.008**
(0.074)




PR x FDI

POP

(b). Short-run
effects
ECT

A(R&D)

A(R&D?)

A(PN)

A(PN?)

A(PR)

0.148*

*3%

(0.064

0.028*

*%

(0.129

0.714*

*k

(0.468

0.259*
(2.848

0.058**
(0.033)

-0.065***
(0.149)

0.948
(0.374)

-0.386**
(2.022)

0.014**
(0.028)

0.048**

*

(0.118)

0.937
(0.096)

0.404
(0.352

)

0.011*
(0.326

-0.198
(0.162

)

0.003*
*

(0.239
)

0.011
(0.139

)

0.032*
*

(0.200
)

-0.042
(0.202)

-0.007***
(0.274)

-0.501
(0.347

-0.037
(0.073

)

0.313
(0.11
0)

0.128
(0.21
0)

0.049

*

(0.07
0)

0.056
(0.136)

0.005**

*

(0.035)

0.453**
(0.026)
0.448**

*

(0.036)

0.127
(0.238)

0.016*

&%

(0.011)

0.461%*
(0.086)
0.416*

*

(0.117)

-0.165
(0.296

)

0.016*

k%

(0.088
)

0.967*

k3%

0.100
(0.204

0.045*
(0.019

)

0.705
(0.30
8)

0.093
%
(0.03
0)

1.220
(0.31
3)

0.245
(0.27
8)

0.065

0.003 **

(0.00 (0.06
2) 9)

0.523*
(0.252)

0.205**

*

(0.035)

0.061
(0.045)

0.044
(0.056)

0.016**
(0.011)




A(PR2)

A(GDP)

A(GDP?)

A(FDI)

A(FDI?)

A (R&D x
GDP)

A (R&D x FDI)

A (PN x GDP)

1.301*

*3%

(0.136
)

0.041
(0.126

)

0.9071#**
(0.166)

0.201
(0.260)

0.608*
(1.733)

1.336
(0.105)

1.5864**
(0.150)

0.405
(0.112)

-0.417*
(0.248)

0.571*

k%

(0.170

0.136*

(0.274

0.164*

(0.143

0.021
(0.023)

0.029 2295

(0.060)

-0.003
(0.077)

*

(0.195)

(0.107

0.082*
(0.045

0.025
(0.066
-0.058

(0.055

-0.118
(0.181

-0.208
(0.155

0.074*

(0.093

0.005
(0.03
9)

0.003
(0.06
2)




A (PN x FDI) -0.231% 0.037

(0.163) -
(0.20
3)
A (PR x GDP) 0.069* -
* 0.047**
(0.042 (0.019)
)
A (PR x FDI) -
0.135
(0.05
0)
A(POP) | 1350 Lloar - ] 0.029 2295 -0.118 -0.208 1.476 1.387 - -
v 0809™* 0835 0.135 0.2*36 0121 }é‘éﬁﬁ 0507 (0:060) 0195 (0.)181 (0.)155 o o O.i:ﬁ] 0'280
(0.068  (0.076)  (0.046) (0.065 (0033 (0.042 (1.674) | (1.24 ) 0 (004 (0.042)
) ) ) ) 1) 9)
Constant - - 3.710** 0.289 7.558* 5.355*
16.543 - ]“'Ho* 10141 0031 0013 . 0064 O'ffé * (1.094) o 0455 6'3;85 ]‘5*99 0.001
W 10,7620 ¥*(0.062 (0.022 ' (0.059 (0.340) (0.862 (0.745 - '
(1149 (1.529) ok 0969 ) ) (0.029) ) (0.12 ] ) (521 (2.60 (0.95 (0.103)
' ) ' (0.624) | 2) 3) 6) 1)
Log likelihood 1074.4 1081.05 1087.59 1063.9 1084.3 1068.7 1061.40 1074.4 1081. 1074.4 1081.0 1087.5 1063.9 1084. 1068. 1061. 1074.4
7 9 4 2 7 05 7 5 9 9 34 72 40 7
Observations 908 908 908 908 908 908 908 908 908 908 908 908 908 908 908 908 908

0.094**
(0.064)

-0.154
(0.118)

0.353**
(0.106)

1081.0
5
908

Note: To conserve space the interpretation is based on the (a) the long-run dynamics and (b) represented bold captures the short run, the error
correction terms (ECT) for both CO2 and methane emissions exhibit negative coefficients (e.g. -0.028 for CO2 emissions and -0.01é for methane
emissions), suggesting a corrective mechanism that leads to reduced emissions. The significance level for the ECT coefficients is denoted at the
1% level. These findings underscore the relationship between economic activities, technological advancements, and environmental outcomes in
Sub-Saharan Africa, emphasizing the importance of fostering sustainable practices for long-term environmental sustainability in the region. The
optimal lag selection was based on the iterated log likelihood rafio computed by the xtpmg command in Stata 18. *** and ** indicate the 1% and
5% level of significance, respectively. A is the difference operator. ECT denotes the error correction term.



4.3. The effect of industrial structure on environmental sustainable development

Table 5 outlines the impact of industrial activities on environmental outcomes in Sub-
SSA, specifically focusing on CO2 and methane emissions. The results show that an increased
industrial contribution to GDP is linked with reduced carbon emissions. The negative coefficient
for the industrial sector's GDP contribution (Indus(GDP)) (-0.963) suggests that industrialization,
when undertaken efficiently and sustainably, can lead to lower carbon emissions. However,
the negative coefficient for the squared term (Indus2(GDP)) (-0.188) implies a non-linear
relationship, where the reduction in carbon emissions diminishes as industrialization increases
beyond a certain threshold, pointing to diminishing returns. This is in line with the findings of
Danmaraya et al. (2022) and Yimen et al. (2020), who suggest that a balance between

industrial growth and sustainability is necessary for continued emissions reductions.

The analysis also shows that current industrial output (Indus(current)) is associated with
a reduction in carbon emissions. The negative coefficient for Indus(current) (-0.280) indicates
that higher levels of industrial activity are linked with lower carbon emissions per unit of output.
Similarly, the squared term for current industrial activity (Indus2(current)) (-0.040) indicates
diminishing returns from further increases in industrial output in terms of carbon emission
reductions. This finding aligns with the work of Kumar et al. (2017) and Smulders and de Noojj
(2003), which highlight how industrial structures, influenced by market failures and policy

inconsistencies, can either mitigate or exacerbate environmental degradation.

When examining methane emissions, the results show a confrasting relationship with
industrial activity. The positive coefficient for Indus(GDP) (0.020) suggests that an increased
industrial contribution to GDP is associated with higher methane emissions, highlighting
potential environmental trade-offs as industrial activities expand. The positive coefficient for
the squared term (Indus(GDP))2 (0.169) suggests that methane emissions rise as industrialization
increases, reflecting possible limits to sustainable industrial growth in SSA. Conversely, current
industrial activity (Indus(current)) is negatively associated with methane emissions (-0.003),
suggesting that while industrial growth can contribute to methane emissions, there may be
opportunities for cleaner production practices to mitigate these emissions. The squared term
for Indus(current) (-0.035) again indicates diminishing returns, implying that further industrial
expansion may not continue to result in methane emission reductions, which contrasts with
previous studies by Barrett (1994) and Goulder (1995), who discussed the role of industrial

structure and weak regulations in exacerbating environmental damage.

The interaction effects between industrial structure and economic indicators (GDP, FDI)
reveal important insights intfo their combined impact on CO2 and methane emissions. The

negative coefficient for the interaction between Indus(GDP) and GDP (-0.367) suggests that a



combination of industrial activities tied to GDP growth results in a significant reduction in CO2
emissions, supporting the notion that industrialization can be environmentally beneficial when
aligned with economic growth. Similarly, the negative coefficient for the interaction between
Indus(current) and GDP (-0.367) indicates that current industrial activities coupled with
economic growth also lead to substantial reductions in CO2 emissions. Additionally, the
negative coefficient for the interaction between Indus(current) and FDI (-0.366) suggests that
foreign investment in industrial activities contributes to CO2 emission reductions, indicating the
importance of sustainable industrial practices facilitated by FDI. These findings align with the
work of Grossman and Krueger (1995) and Kahn (2010), who found that industrial growth, when

accompanied by effective policies and practices, can reduce emissions.

For methane emissions, the interaction between industrial activity and economic
indicators suggests more complex dynamics. The interaction between Indus(GDP) and GDP
leads to a modest reduction in methane emissions (-0.037), indicating that economic growth
may help mitigate methane emissions when paired with industrial activities. Similarly, the
intferaction between industrial contribution to GDP and FDI leads to a slight reduction in
methane emissions (-0.021), suggesting that foreign investment may help promote cleaner
industrial tfechnologies. However, the interaction between current industrial activity and GDP
leads to a slight increase in methane emissions (0.004), highlighting the challenges associated
with unchecked industrial expansion. On the other hand, the interaction between current
industrial activity and FDI leads to a slight decrease in methane emissions (-0.010), suggesting
that FDI can foster the adoption of cleaner technologies that help reduce methane emissions
in SSA.

In summary, the relationship between industrial activities and emissions is complex.
Industrial contributions to GDP correlate with reduced carbon emissions, albeit with diminishing
returns beyond a certain point. Conversely, industrial activity linked to GDP tends to increase
methane emissions, while current industrial output inversely correlates with methane emissions.
The interactions between industrial structure, GDP, and FDI highlight the potential for significant
CO2 emission reductions when industrial growth is effectively aligned with economic growth
and foreign investment. These interactions also suggest that FDI can play a crucial role in
promofting cleaner industrial practices that help mitigate methane emissions. The findings
underscore the need for holistic approaches to balancing industrialization with environmental

sustainability, as emphasised by Fischer and Newell (2008) and Fullerton and Metcalf (2001).



Table 5. The effect of industrial structure-environmental sustainable development, by industrial structure

Dependent Carbon emissions Methane emissions
Var.
Model (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
(a). Long-run
dynamics
Indus (cor) _ 0.033***  0.004*** 0.846%** 0.155** 0.020** - -0.001***  0.049*** 0.007***
0.963** (0.136) (0.150) (0.232) (0.140) * 0.012**  (0.000) (0.013)  (0.001)
* (0.004) *
(0.067) (0.003)
Indus (cop) 2 - 0.169**
0.188** (0.053)
(0.072)
Indus (current) -0.280*** -0.003***
(0.684) (0.001)
Indus (curren‘r)Q -0.040* -0.035***
(0.020) (0.008)
GDP 0.712* 0.133***  (0.034** - 0.001 -
* (0.193) (0.127) 0.146**  (0.002) 0.326**
(0.199) * *
(0.010) (0.055)
GDP? -2.47 6%+ 0.032**
(0.44¢6) *
(0.008)
FDI -0.040 0.034 0.126*** - 0.076* -0.006
(0.048)  (0.053) (0.033) 0.004**  (0.037)  (0.017)
(0.002)
FDI2 0.150*** -0.037
(0.063) (0.026)
Indus (Gpp) X -0.367*** -
GDP (0.017) 0.037**

(0.026)




Indus (GDP)x
FDI

Indus (current)x
GDP

Indus (current)
x FDI

POP

(b). Short-run
effects
ECT

A (Indus (cor))

A (Indus (cor)?)

A (|ﬂdUS (curren’r))
A (|ﬂdUS (currenT)Q)

A (GDP)

A (GDP?)

0.148**

(0.064)

0.094**
(0.016)
0.011%*
(0.004)

0.018**

*

(0.004)

0.009
(0.010)

0.058**
(0.033)

-0.001***
(0.002)

0.138%+
(0.020)
-0.031
(0.018)

0.010%*
(0.003)

0.014%  0.110*

(0.028)  (0.035)

-0.060** -

(0.075)  0.027***
(0.034)

-0.001*

(0.000)

-0.038*

(0.016)

-0.306
(0.271)
-0.367%*
(0.017)
-0.366***
(0.018)
1,007 -1.849%* 0.029*
(0.005) (0.178) (0.014)
-0.007***  -0.004**  -0.080***
(0.013) (0.001) (0.059)

-0.037
(0.026)

0.057**
*
(0.003)
0.722**

*

(0.095)

-0.012
(0.017)

0.153
(0.219)

-0.092%**
(0.009)

-0.001%**
(0.002)

0.002
(0.032)
0.002
(0.004)

-0.015
(0.035)

0.003**
(0.001)

0.031**
(0.012)

0.297**
(0.050)
0.989**

*

(0.007)

1.913**

*

(0.134)

0.041**

(0.017)

-0.021%**
(0.245)

-0.063%**
(0.012)

-0.029***
(0.003)

0.004**
(0.008)

-0.043%**
(0.006)

0.002***
(0.000)

-0.010%*
(0.114)
-0.003***
(0.001)

0.012%++
(0.013)




A(FDI) 0.044 0002  -0.005 - -
(0.030)  (0.002)  (0.004) 0.447**  -0.020*  0.084**

: (0.011) :
(0.047) (0.015)
A(FDP2) 0.003** 0.727
(0.001) (0.284)
A (Indus (cpp) X 0.000 0.001
GDP) (0.001) (0.001)
A (Indus (Gpp) X -0.001 -0.005
FDI) (0.001) (0.008)
A (|ndUS (current)X -0.024 0.001**
GDP) (0.003) (0.001)
A (Indus (current) X -0.095%**
FDI) (0.014)
A(POP) 0049 0007 0074 0001 00227  -0.003¢* 'i’&@ 5 02057 o016 9018 o045t 0093+ 0003
(0.013) (0.007) (0.024)  (0.004) (0.007) (0.001) (0.035) (0.011) (0.088) (0.019)  (0.030) (0.002)
Constant - 0.221%**  -6.324*** -0.095 5.069*** -0.012 10.507*** -
1.645%  (0.045)  (1.348) (0.632)  (0.094) (0.027) (0.974) 6000  -0.130  -2.04*1 -0.166 5355  0.101**
* * (0.228)  (1.196) (0.179) (0.156)  (0.031)
(0.288) (0.448)
Log likelihood 1204.4 1201.05 1207.59 1203.99 1204.34 1208.72 1201.40 1204.4 1201.05 1207.5 1203.9 1204.34 1208.72
7 7 9 9
Observations 1,222 1,222 1,222 1,222 1,222 1,222 1,222 1,222 1,222 1,222 1,222 1,222 1,222

-0.003
(0.003)
1.165%*
(0.069)

7.964%%
(1.494)
1201.40

1,222

Note: To conserve space the inferpretation is based on (a) the long-run dynamics and (b) represented bold capfures the short run, the error
correction terms (ECT) for both CO2 and methane emissions exhibit negative coefficients (e.g. -0.094 for CO2 emissions and -0.057 for methane
emissions), suggesting a corrective mechanism that leads to reduced emissions. The significance level for the ECT coefficients is denoted at the
1% level. These findings underscore the relationship between economic activities, technological advancements, and environmental outcomes in
Sub-Saharan Africa, emphasizing the importance of fostering sustainable practices for long-term environmental sustainability in the region. The
optimal lag selection was based on the iterated log likelihood ratio computed by the xtpmg command in Stata 18. *** and ** indicate the 1% and
5% level of significance, respectively. A is the difference operator. ECT denotes the error correction term.



4.4 Causality test

To ensure a complete analysis, we conclude our assessment by investigating the causal
effect outlined in Equation (1). Considering cross-sectional dependence and heterogeneous
panels, we utilize the Dumitrescu and Hurlin, (2012) Granger non-causality test. The linear

model of the test, based on Equation 1 as is provided in Equations (6) and (7) as follows:

K K
k K 6
CO2 =+ ) B0 C02 4 Zk_l 0%k + £ (¢)
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X = g+ ) At Zk_lel.( ) €024y + &1 )

where ﬁi(") and Gi(") represent the autoregressive parameter and the covariate with lag order

k, respectively.

Table 6 presents the test results for the null hypothesis of homogeneous non-causality.
The analysis unveils bidirectional causality between methane (CH4) and carbon dioxide (CO»)
emissions. Additionally, there exists unidirectional causality from ICTSE to CO2 emissions,
supported by significant test statistics of 1.552 and 2.355 for ICTSE causing CO2 and COz2
causing ICTSE, respectively. Similarly, bidirectional causality is evident between ICTSI and CO2
emissions, with significant test statistics of 1.787 for ICTSI causing CO2 emissions and 2.577 for
COz2 causing ICTSI. The p-value for this bidirectional causality is 0.010, signifying a statistically
significant relationship between ICTSI and CO2 emissions in both directions suggesting the

technological effect in energy consumption (Apergis & Payne, 2012).

However, no homogeneous causality is found between R&D and CO2 emissions. The
test staftistics for both directions are noft significant, with values of 1.185 for R&D causing CO2
emissions and 0.303 for CO2 causing R&D. Similarly, no homogeneous causality is observed
between PR and CO2 emissions. Both directions yield non-significant results, with values of 1.106
for PR causing CO2 emissions and 0.005 for CO2 causing changes in PR. Likewise, no
homogeneous causality is found between PN and CO2 emissions, with non-significant results
for both directions. The p-value for CO2 Granger causing populationis 0.615, indicating a lack
of statistical significance in this relationship. However, CO2 does Granger cause population,
suggesting that past values of CO2 emissions precede changes in population, although the

reverse causal direction is not observed.

Furthermore, there is no homogeneous causality between Indus(current) and CO2
emissions. Similarly, there is no consistent causal relationship between CO2 emissions and
Indus(current). Additionally, CO2 emissions Granger cause Indus(current) but not vice versa,
implying that past values of CO2 emissions can predict current values of Indus(current) but not

the other way around.



Similarly, no homogeneous causality exists between GDP and CO2 emissions. It suggests
no consistent causal relationship between CO2 emissions and GDP. Moreover, GDP Granger
causes CO2 emissions but not vice versa, implying that past values of GDP can predict current
values of CO2 emissions but not the other way around. Regarding population (POP) and COz2
emissions, no homogeneous causality is indicated. Similarly, there is no consistent causal
relationship between CO2 emissions and population. Additionally, CO2 emissions Granger
cause population but not vice versa, suggesting that past values of CO2 emissions can predict

current values of population but not the other way around.



Table 4. The Dumitrescu-Hurlin causality test, by pairwise variables

Null Hypothesis W-statistic Z-bar tilde Prob. Conclusion

Methane does not homogeneously cause CO:2 3.301 8.293 0.000*** Bidirectional causality exists

CO2 does not homogeneously cause METHANE 4,261 11.919 0.000***

ICTSE does not homogeneously cause CO:2 1.552 1.689 0.091** ICTSE does Granger cause CO2 but
CO2 does not homogeneously cause ICTSE 2.355 4719 2.E-06 not vice versa

ICTSI does not homogeneously cause CO2 1.787 2.577 0.010** Bidirectional causality exists

CO2 does not homogeneously cause ICTSI 1.836 2.761 0.005%**

R&D does not homogeneously cause CO2 1.185 0.303 0.7615 CO2 does Granger cause R&D but
CO2 does not homogeneously cause R&D 1.826 2.725 0.006*** not vice versa

PR does not homogeneously cause CO:2 1.106 0.005 0.995 CO2 does Granger cause PR but not
CO2 does not homogeneously cause PR 1.943 3.165 0.007*** vice versa

PN does not homogeneously cause CO2 0.972 -0.502 0.615 CO2 does Granger cause PN but not
CO2 does not homogeneously cause PN 2.119 3.829 0.000%*** vice versa

INDUS (GDP) does not homogeneously cause CO2 3.031 7.273 3.E-13 No bidirectional causality exists
CO2 does not homogeneously cause INDUS (GDP) 2.979 7.077 1.E-12

INDUS (CURRENT) does not homogeneously cause CO2 3.022 7.239 5.E-13 CO2 does Granger cause INDUS
CO2 does not homogeneously cause INDUS (CURRENT) 1.741 2.403 0.016** (CURRENT) but noft vice versa

GDP does not homogeneously cause CO2 5.116 15.149 0.000*** GDP does Granger cause CO2 but
CO2 does not homogeneously cause GDP 2.993 7.130 1.E-12 not vice versa

POP does not homogeneously cause CO2 2.846 6.577 S5.E-11 CO2 does Granger cause POP but
CO2 does not homogeneously cause POP 9.795 32.819 0.000%*** not vice versa

FDI does not homogeneously cause COz 2.659 5.868 4.E-09 No bidirectional causality exists

CO2 does not homogeneously cause FDI 2.270 4.400 1.E-05




5. Conclusion and policy recommendation

This study enhances the current body of literature regarding the impact of ICT on
environmental sustainability by exploring how green innovation and industrial structure
influence the relationship between ICT and environmental sustainability. The key question we
answer is: is the adoption of ICT in SSA countries associated with improvements in
environmental sustainability? To investigate this, we analyze data from 41 SSA countries
spanning the years 1998 to 2022, utilizing the ARDL model, PMG estimator, and Granger
causality to tackle methodological challenges. Our findings support the hypothesis (H1) that
the adoption of ICT in SSA countries is linked to improvements in environmental sustainability.
The findings indicate that higher levels of ICT goods exports and imports are associated with
reduced CO2 emissions, highlighting the potential of leveraging ICT trade to mitigate
environmental impact. Additionally, the interaction terms between ICT trade and economic
indicators demonstrate significant reductions in both carbon and methane emissions,
underscoring the synergistic effects of ICT trade, economic growth, and foreign investment in
mitigating emissions and promoting environmental conservation in the region. Therefore, the
study provides evidence supporting the hypothesis that the ICT conftributes positively to

environmental sustainability in SSA.

Also, the results support hypothesis (H2), that investment in R&D for green technologies
is associated with a significant reduction in both CO2 and methane emissions. Similarly,
innovation and patent activity lead to reduced CO2 emissions. Interaction effects between
green technology and economic indicators reveal synergies in reducing emissions,
highlighting the effectiveness of combining innovation, economic growth, and foreign

investment.

The results of the study support hypothesis (H3) that industrial structure exacerbates
environmental degradation in Sub-Saharan African countries, hindering overall environmental
sustainability efforts. The study finds that as industrialization intensifies or contributes more to
GDP, there is a notable reduction in carbon emissions, suggesting potential environmental
benefits when industrial activities are conducted sustainably. However, a non-linear
relationship indicates diminishing returns beyond a certain threshold, highlighting
environmental limits. Conversely, industrial activities positively correlate with methane
emissions, indicating potential environmental challenges associated with certain industrial
processes. Interaction effects suggest that addressing industrial structure alongside economic

growth and foreign investment is crucial for promoting environmental sustainability in SSA.

The findings of this study have significant policy recommendations for academics and
practitioners in SSA regarding the interplay of ICT, green innovation, and industrial structure

with environmental sustainability. Policymakers should prioritize promoting ICT tfrade by



enhancing infrastructure and reducing tariffs on ICT products, recognizing their potential to
reduce CO2 emissions. Increased investment in research and development for green
technologies is crucial, supported by funding, grants, and partnerships with universities and the
private sector. Encouraging innovation and patent activity through streamlined processes and
subsidies for eco-friendly technologies can further yield environmental benefits. It is essential to
ensure that industrialization occurs sustainably, with regulations promoting cleaner production
techniques and emissions controls. Policymakers should adopt a holistic approach to
economic growth that integrates environmental considerations into planning and strategies,
ensuring alignment with sustainability goals. Additionally, addressing the specific challenges
posed by industrial structures and fostering collaboration between public and private sectors
can enhance the effectiveness of sustainable practices. Finally, establishing robust monitoring
and evaluation frameworks will help assess the effectiveness of policies related to ICT, green
innovation, and industrial practices, ensuring responsiveness to changing conditions. By
implementing these recommendations, SSA countries can leverage ICT and green innovation
while tackling industrial challenges to promote environmental sustainability and foster a

greener economy.

The main theoretical implication of the study is that the adopted theoretical
underpinning have been broadly confirmed within the remit of examined linkages, especially
as it pertains to when the nexus between ICT and environmental degradation is assessed with
the influence of intervening variables such as green innovation and industrial structures. It
follows that the present study has broadly confirmed the Internet Growth and Contestable
Market Theory (IGCMT) and the Unified Theory of Acceptance and Use of Technology (UTAT),
in the light of the fact that, the adoption of information technology for environmental
outcomes is not linear, but contingent on intervening or policy variables as employed within
the remit of the present exposition. While the attendant theories largely posit for a linear nexus
between ICT adoption and macroeconomics outcomes, the present study has contributed to
the attendant theories by establishing that the nexuses are not exclusively linear but also
contingent on a plethora of other policy variables as applied in this study in terms of green
innovation and industrial structures. It follows that the non-linear assessment with the specific

intervening variables is the theoretical contribution of the present study.

One major limitation of this study is that the findings provide general perspectives from
a panel of countries and thus, country-specific policy implications should be based on the
relevant and robust country-specific empirical findings. It follows that future research should
be tailored to assess if the established findings in this study withstand empirical scrutiny from
counftry-specific perspectives. Furthermore, carbon and methane emissions are not
comprehensive measures of environmental degradation. Accordingly, other measures

proxying for inter alia, sea pollution, ecological footprint and life cycle assessment (LCA),



should be considered in future research. Accordingly, a LCA process may measure items like
energy, water, and raw material consumption as well as bi-products like trash, industrial

emissions, and the consequences of various disposal methods.
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Appendix

Appendix Table 1. Correlation Results

CO2 1
Methane 0.098 1
ICTGE 0.177  -0.006 1
ICTGI -0.176  -0.267 0.390 1
R&D -0.423  -0.095 -0.034 0.198 1
PN -0.149  -0.207 -0.144 0323 0.155 1
PR -0.297 -0.090 -0.174 0306 0.108 0.658 1
INDUSGDP -0.324 -0.268 -0.211  0.164 0.087 0.001 0.083 1
INDUS -0.198 -0.186 -0.036 0.021 0.034 -0.139 -0.060 0.724 1
(current
GDP -0.702  0.049 -0.312 0.124 0.464 0.178 0.227 0.248 0.068 1
POP 0.436 -0.221 0.033 0370 -0.078 0.480 0.417 -0.011 -0.113 -0.392 1
FDI -0.377 0.101 -0.144  -0.137 0.036 -0.320 -0.136 0.529 0.577 0.245 -0.482
Appendix Table 2. Pesaran Cross-Sectional Dependency, Westerlund (2007) Cointegration
and Pesaran-Yamagata (2008) Slope Homogeneity Results
Variable CD-Test CD2-Test Coinfegration Slope Homogeneity
CO2 57.76*** 2363.41%** Gt D 158%x A 7 854%%*
Methane 126.74*** 3780.81%** Pt -11.424** AAd 11.339%**
ICTGE 5.23*** 1096.79*** Ga _4.755%*
ICTGCI 34.04*** 1321.72%** Pq _3.089%*
R&D 1.07** 553.21***
PN 0.60** 590.09%**
PR 4,23*** 599.47***
Indus (GDP) 4.,08*** 1482.20***
Indus (current) -1.15%* 1260.60***
GDP 58.17*** 2586.03***
POP 140.77*** 4027 .40***
FDI -0.77** 1467.10%**
Appendix Table 3. Panel Unit Roots Results
CIPS TREND CADF TREND CIPS TREND CADF TREND
Level First Difference
co2 -2.488** -2.392** S2.141% -2.044** -4.735%*F  -4.948***  _3.077*F*  -3.268***
Methane -2.307*** -4,153*** -1.379** -1.742%* -5.647***% 5,943+ -1,820** -2.551**
ICTGE -2.634** -3.180** -2.297** -2.961** 51647 5. 200%*%*%  -4,124***% -4, ]199%**




ICTGI

R&D

PN

PR

Indus (GDP)
Indus (current)
GDP

POP

FDI

-2.906*
-4.373***
-4.061**
-4.296%*
-3.434***
-2.858***
-1.741%*

-1.375*
-2.365***

-3.319*
-4.509***
-4.218**
-4.503**
-3.812%**
-3.421
-1.851**
-1.553*
-2.652**

-2.434x**
-3.153***
-2.804***
-3.421**
-2.360***
-1.466**
-1.918**
-2.609**
-2.087**

-2.812**
-3.130***
-2.960**
-3.722%**
-2.853***
-2.156**
-2.132**
-2.541**
-2.539**

-5.109***
-5.939***
-5.874***
-5.839**
-5.642%**
-5.912%**
-3.854***
-1.481**
-4.793%**

-5.218***
-6.092%**
-6.015%**
-5.839**
-5.723***
-6.012%**
-4.239***
-1.741%*
-4.875%**

-3.997**
-4.639%**
-4.606***

-4.850**
-4.024***
-3.436***
-2.818***

-2.028**
-3.775%**

-4.167**
-4.565%**
-4.632%**

-4.872**
-4.007***
-3.448***
-3.258***

-2.719**
-3.874***
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