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Abstract

This study aims to estimate the temperature threshold for agricultural productivity in West Africa,
as little is known about the temperature threshold for agricultural production. The study utilized the
Driscoll and Kraay regression, the Prais-Winsten regression, and the Quantile Regression as
estimation strategies for 16 West African countries between 1990 and 2021. The findings reveal a
threshold value of 24.39 degrees Celsius, above which temperature reduces agricultural
productivity. Moreover, the result from the quantile regression reveals a threshold value of 25.27
degrees Celsius in countries where the existing level of agricultural productivity is low. These
findings carry significant policy implications for the West African region, as the mean annual
temperature is above these threshold values, emphasizing the importance of adopting a
comprehensive approach that integrates climate change adaptation and mitigation strategies.
The findings call for proactive measures to enhance climate resilience and reduce vulnerability
by governments in West Africa and stakeholders. Climate-resilient agricultural practices should be
adopted, including the use of drought-resistant crop varieties, the development of efficient
irrigation systems, the implementation of early warning systems for extreme weather events, and
the provision of agricultural extension services to support farmers in adopting sustainable

practices.

Keywords: Climate Change, Temperature, Agricultural Productivity, West Africa, Panel Data

Regression



Introduction

The intrinsic relationship between climate change and agricultural productivity has been well
amplified by several studies (e.g., Serdeczny et al., 2017; Amankwah, 2019; Zakari et al., 2022).
Several scholarly and policy standpoints on agriculture and sustainability, such as those in the 2022
International Conference on Forestry Food and Sustainable Agriculture, the 2015 United Nations
Climate Change Conference (2015), and the Infergovernmental Panel on Climate Change report
(2007, 2010, 2019), have raised concerns about the susceptibility of agriculture to climate change.
Factors such as rising temperatures, altered precipitation patterns, rising sea levels, and even a
shift in pests and diseases as a result of changes in femperature can influence agricultural outputs.
Globally, understanding the nexus between climate change and agricultural productivity is
essential fo achieving two key United Nations Sustainable Development Goals (SDGs): Goal 1

(poverty reduction) and Goal 2 (zero hunger).

In this study, an attempt is made to estimate the temperature threshold for agricultural productivity
in West Africa, which is justifiable for several reasons and holds significant implications for food
security in the region. Firstly, understanding the temperature threshold for agricultural productivity
is key to informing policy interventions that are aimed at mitigating the adverse effects of climate
change on agricultural productivity. Through the identification of the point at which rising
temperatures begin to adversely affect agriculture, policymakers can implement targeted
interventions to adapt farming practices and minimize potential losses. Though significant
variability exists in temperature both day and night, identifying the threshold value is essential to
understanding how far the mean temperature deviates from the threshold for agricultural
productivity. Secondly, estimating the temperature threshold can inform agricultural stakeholders
on decisions regarding crop selection, planting schedules, and investment in climate-resilient

agricultural practices.

In West Africa, rising temperatures have become an economic concern due to their negative
effect on agriculture and food security. According to Jalloh et al. (2013), rising tfemperatures are
exacerbating existing problems for farmers and those in the agriculture-related sectors in the sub-
region. Von Braun (2021) has further revealed that extreme weather events amplified by climate
change contribute significantly to food insecurity. For West Africa, climate change poses
additional threats to socioeconomic conditions due to the high poverty numbers in the sub-region
(Trameau, 2022). The region has witnessed substantial changes to the surface temperature in
some countries, growing by almost a degree Celsius in Gambia, Ghana, and Togo (World Bank,
2021). Temperature changes such as this can affect the ecosystem and biodiversity, with warmer

climates associated with extreme weather events such as heatwaves, storms, floods, and droughts
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that precipitate lower agricultural productivity levels (IPCC, 2007; Heltberg et al., 2009; Ayanlade
et al., 2021).

According to the Food and Agriculture Organization (FAO, 2018), the agricultural sector holds
significant importance in West Africa, contributing approximately 66% to total employment in the
region. This statistic aligns with findings from the World Bank (2024a), which indicate that more than
50% of the overall workforce in West Africa was engaged in agriculture in 2021, as revealed in
Figure 1. Moreover, the agricultural sector accounted for 25.8% of the region's gross domestic
product (GDP) in that year (World Bank, 2024b). The heavy reliance on agriculture as a source of
employment and economic output in West Africa underscores the critical need to address the
challenges posed by climate change. The increase in temperature can significantly impact crop
yields, livestock productivity, and overall food security in the region. As a result, effective
adaptatfion and mitigation strategies are imperative to safeguard both the livelihoods of those

dependent on agriculture and the broader economic stability of West African countries.

Figure 1: Agriculture (%) of GDP and Employment in agriculture (% of total employment)
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Source: World Bank World Development Indicators. Note: The data are average values across

West African countries.

An initial step in developing adaptation and mitigation strategies is to comprehend the
temperature dynamics in the region. Understanding these dynamics is crucial to assessing the
mean temperature in relation to the level of temperature needed for optimal agricultural
productivity. Schlenker and Roberts (2009), Dell et al. (2009), Burke, Hsiang, and Miguel (2015),
Ibrahim and Ajide (2021), Ibrahim (2022), and Ortiz-Bobea et al. (2021) have all demonstrated that

temperature has a significant influence on agricultural productivity and that there is a non-linear



impact on both agricultural productivity and economic production. They have observed an
inverted U-shaped relationship between temperature and agricultural productivity, indicating
that as temperatures rise, agricultural productivity increases up to a certain threshold. However,
beyond this threshold, a negative relationship emerges, leading to decreased agricultural

productivity.

This study confributes to the existing literature by applying panel data from 16 West African
countries from 1990 to 2021 to examine the threshold tfemperature for agricultural productivity. To
the best of our knowledge, thisis the first study that attempts to estimate the temperature threshold
for the region. Furthermore, while this study focuses on total agricultural productivity, previous
studies on the implications of climate change on agricultural productivity have often focused on
selected crops (Heltberg et al., 2009; Oluoko-Odingo, 2011; Seaman et al., 2014; Amobi & Onyishi,
2015; Adenle et al., 2017; Morton, 2017; Serdeczny et al., 2017; Batten, 2018; Molua, 2020). The
study follows the three-factor agricultural production function of Echevarria (1998) as a theoretical
framework. Driscoll and Kraay Ordinary Least Square (OLS) and Prais-Winsten regressions with
standard errors that are robust to conventional biases in econometric modeling are used as
empirical strategies. The robustness of the results is further examined using Quantile Regression
(QR) to ascertain whether existing levels of agricultural productivity influence temperature and
agricultural productivity dynamics. The potential findings also have implications for the 13t
sustainable development goal (i.e., SDG13) on climate change, especially as it pertains to the
corresponding findings showing the relevance of a multi-faceted approach that integrates
adaptation and mitigation climate change strategies and taking proactive measures to build

climate resilience and vulnerability.

Climate Change and Agricultural Productivity

This section provides some theoretical considerations and an empirical review that are relevant
to this study. The theoretical underpinning of the nexus between climate change and agricultural
productivity is consistent with the theory of change in the agricultural literature (Thornton et al.,
2017), especially as it pertains tfo agricultural research for development (AR4D) being a key
mechanism to economic development in the sampled countries. According to the existing
theoretical insight (i.e., the theory of change in the agricultural literature), massive obstacles are
ahead for AR4D, and methods for overcoming them more quickly and effectively are required
(Thornton et al., 2017). Here, we describe one AR4D strategy based on impact pathway thinking

and the theory of change that may be able to address effectiveness and efficiency concerns.



This is articulated in the present study in terms of understanding the temperature levels at which
climate change negatively affects agricultural productivity. Additionally, within the context of
ecological and environmental economics, the environmental stress hypothesis and the cognitive
stress theory (Lazarus, 1966) suggest that environmental stressors, such as those induced by climate
change, can have significant impacts on ecological systems, including agricultural ecosystems,
thereby affecting productivity. Earlier studies, including those by Mendelsohn, Nordhaus, and
Shaw (1994) and Fischer, Shah, and van Velthuizen (2002), have highlighted the impact of rising

temperatures on agricultural productivity.

In consonance with the environmental stress hypothesis, a considerable number of studies have
found inverse links between climate change variables and agricultural productivity. For instance,
in Nigeria, Zakari et al. (2022) used data from 1783 households to confirm that changes in rain
patterns (93.21%) have a negative impact on food security. The study further found that
encouraging adaptation strategies to raise awareness of climate change has a positive and
significant impact on food security. In the Ashanti region of Ghana, Dwamena, Tawiah, and
Akuoko (2022) found that a reduction in maize of 74.3% and a reduction in cassava of 62.4% are
attributed to variations in minimum temperature, maximum temperature, relative humidity, and
rainfall. From the sample of 172 cotton farmers, Soviadan et al. (2019) confirmed that climate
change has a significant negative impact on cotton production. They further confirmed that
climate change reduces the level of soil fertility in northern Togo. The study by Fonta et al. (2017)
and Ezin, Kochoni, and Ahanchede (2018) further reveals that annual increases in temperature

and decreasing precipitation are associated with declining crop production.

After applying the dynamic general equilibrium model to examine the shock to the economy
effect of climate change in Benin, Hounnou et al. (2019) found that climate change has a
significant effect on crop losses of 4.4% and non-agricultural output of 0.9% on average by 2025.
They further confirm that climate change is associated with a decrease in exports (25.5%), imports
(4.9%), and the price of labor and capital. This finding is further supported by Ayanlade et al. (2020)
on the negative relationship between temperature and crop yields in Nigeria. In three northern
states in Ghana, Amankwah (2019) used data on rainfall and temperature ranging from 1961-
2010 to examine the effect of the climate on agricultural productivity in the three states. The results
showed that climate change is accompanied by increasing temperatures and decreasing rainfall
frends across the three regions, with a significant impact on agricultural productivity. Adams (2019)
confirmed climate change's dominant role in shaping crop variety and farming practices in
Nigeria. To sustainably boost agricultural productivity, the study recommends constant

adaptation and the promotion of climate-resilient technologies.



The study by Bagbohouna et al. (2020) revealed that an increase in maximum temperature and
a variation in minimum temperature have a negative impact on crop yields. Griter et al. (2022)
confirm that climate change in the form of high temperatures and flooding impedes the growth
of coffee, cashew, and avocado in Guinea-Bissau. Ortiz-Bobea et al. (2021) found that
anthropogenic climate change (ACC) has slowed global agricultural productivity growth. Their
study shows ACC has reduced global agricultural total factor productivity (TFP) by approximately
21% since 1961, equivalent to losing seven years of productivity growth. The impact is more severe
(areduction of 26-34%) in warmer regions like Africa, Latin America, and the Caribbean. They also
discovered that global agriculture has become more vulnerable to ongoing climate change. Dell
et al. (2009) explored the inverse association between temperature and income, analyzing cross-
country data and subnational data at the municipal level across 12 countries in the Americas.
They observed a consistent negative correlation between income and temperature, irrespective
of whether it was within-country cross-sectional or cross-country correlation analysis. The reviewed
literature has generally confirmed the detfrimental effect of climate change on the productivity of
the agricultural sector. Addressing the discrepancy between micro- and macro-level observations
concerning the influence of wealth on coupled human-natural systems and the worldwide
ramifications of climate change, Burke, Hsiang, and Miguel (2015) discovered that economic
productivity exhibits a non-linear relationship with temperature across all nations. They noted that
productivity reaches its peak at an annual average temperature of 13 °C and experiences a

significant decline at higher temperatures.

Our study deviates from these studies in three ways: (1) this study takes into consideration total
agricultural productivity as against specified crop yields, providing a much broader perspective
on the nexus between temperature and agriculture; (2) the study focuses on the West African
subregion where climate change has become pronounced; and lastly, (3) the study utilizes
updated panel data, taking info consideration cross-sectional dependence in our long-run
estimates. The need to consider cross-sectional dependence in the estimation procedure is key
to addressing the interdependence of the error term across West African countries, ensuring

inference validity.



Model Specification, Methodology and Data
Model Specification

This study follows the three-factor agricultural production function of Echevarria (1998). The
production function captures agricultural productivity using agricultural land, labor, and capital,
thus allowing for neutral tfechnological change. This framework is straightforward to operationalize
in econometric modeling and can examine the dynamics of agricultural productivity while
accounting for structural change. The production function, which allows us to demonstrate the

direct effect of the explanatory variables, can be expressed as:
Y, = Atf(Kt:Lt: Nt) €]

where Y, is agricultural output in year t. K, L, and N, are capital in year t, labor in year t, and land
in year t, respectively. A, represents the level of technology. The production function is assumed
fo be constant in its return fo scale. More explicitly, equation (1) can be re-writften as an

econometric specification of the form:
Yi =ag+ a;K; + a,L; + azN; + u, 2

here, u, is the error term assumed to be normally distributed. We introduce three variables into
equation (2). The first is materials (M), which include fertilizers and feed, which are essential for
agricultural productivity. Secondly, we infroduce our temperature and its squared term to capture
the non-linear effect temperature on agricultural productivity. Equation (2) can hence be written

in a panel data framework as:
Yii = ag + a1 K;; + ay L + azNi + agM;, + astemp; + a6tempi2t + u; 3)

According to Echevarria (1998), the coefficients of capital, labor, land, and materials should add
up to one and represents the share of value added from these factors of production. The study
assumes that rising tfemperature increases agricultural productivity to a certain threshold beyond
which agricultural productivity starts declining. Temperature is freated as an exogenous variable
in this study because it is influenced by broader climatic and atmospheric conditions. In

computing the threshold value, the study follows Asongu and Odhiambo (2021).



Methodology

This study utilized three estimation procedures for robustness purposes. They include the Prais-
Winsten regression, the Driscoll and Kraay (1998) OLS regression, and the QR estimator. According
to Iheonu and Oladipupo (2023), the Prais-Winsten regression with panel-corrected standard errors
(PCSE) was developed by Beck and Kafz (1995) and is robust to small sample sizes and finite
sample bias (Elheddad, 2018; Lu et al., 2020). The estimator is robust fo cross-sectional
dependence, heteroskedasticity, and serial correlation, which bias econometric models.
Moreover, the Driscoll and Kraay regression OLS is also robust to conventional econometric biases
such as cross-sectional dependence, heteroskedasticity, and serial correlation (Adeniran,
Ekeruche, & Iheonu, 2022). To take into consideration existing levels of agricultural productivity,
the study utilizes QR. Following Asongu and Eita (2023) and Asongu and Odhiambo (2021), by
employing QR, the study can assess how temperature affects agricultural productivity throughout
the conditional distribution of agricultural productivity. While the OLS assumes a normally
distributed error term, the quantile regression assumes the non-normality of the error terms, and
the estimated parameters in QR are examined throughout the conditional distribution of the
dependent variable (Koenker & Bassett, 1978; Ineonu, Obumneke, & Agbutun, 2023; Iheonu et al.,
2023).

Essentially, the 6" quantile estimator of agricultural productivity is obtained by solving the
optimization problem in equation (4). Following Asongu & Odhiambo (2021), for simplicity, the

equation is presented without subscripts.

min | Z0ly; —x:Bl  Z(1 —0)|y; — x;B]

BeRk ie{i:y; = x;B} ie{i:y; < x;8} )

where 0¢(0,1). While the OLS is premised on reducing the error sum of square, QR is premised on
assessing the sum of absolute deviations for all quantiles. In light of this, the conditional quantile of

agricultural productivity or y; given x; is:
9 !
0 (5) = xio ®)
Xi

In equation (5), for the respective 8" examined quantiles, parameters that are characterized by
unique slops are examined. The dependent variable y; is the agricultural productivity indicator

and x; contains a constant term, temperature, and the confrol variables adopted in the model.

Prior to the estimation of the models, the study examines the characteristics of each of the
variables in the model to justify the utilization of the regression strategy. Firstly, the study tests for

cross-sectional dependence using the Breusch-Pagan Lagrangian Multiplier (LM) procedure. It
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should also be highlighted that the major reason for using the Breusch-Pagan LM test is due to the
characteristics of the dataset, where the number of time periods is greater than the number of
cross-sections, i.e. T > N. According fo Iheonu et al. (2020) and Iheonu et al. (2021), cross-sectional
dependence mirrors the correlation between individual error terms among cross-sectional units.
Neglecting the presence of cross-sectional dependence in an econometric procedure will result

in biased standard errors.

The general null hypothesis for cross-sectional dependence is such that:
T = corr(‘cit, ‘cjt) =0Vi#j (6)

here, i and j are two cross-sectional units.

With regards to the test for stationarity of the variables, the study employed the cross-sectional
augmented Dickey-Fuller (CADF) unit root test proposed by Pesaran (2003), which accounts for
cross-sectional dependence in the testing procedure. The Pesaran (2003) procedure eliminates
cross-sectional dependence by augmenting the standard ADF regressions with the cross-sectional
averages of lagged levels and the first difference of the individual series. Additionally, the
existence of long-run relationships was ascertained using three panel cointegration techniques.
They include the Kao (1999) cointegration test, the Pedroni (1999) cointegration test, and the
Westerlund test proposed by Westerlund (2007) and Persyn and Westerlund (2008). While the Kao
and Pedroni tests assume cross-sectional independence, the Westerlund test accounts for cross-
sectional dependence. According to Nathaniel and Iheonu (2019), the Westerlund test is an error-
correction-based test that deals with cross-sectional dependence by utilizing robust critical values

through booftstrapping.

The slope homogeneity test of Pesaran and Yamagata (2008) is further used to test for slope
homogeneity. The null hypothesis of the test is that the regression slope is homogeneous, while the
alternate hypothesis is the presence of a heterogeneous slope. The study utilizes the test statistics
of Blomquist and Westerlund (2013) to account for heteroskedasticity and autocorrelation. The
presence of slope heterogeneity adds more credence to the use of QR due to its ability to
estimate regression parameters based on existing levels of the dependent variable. Due to the
number of countries in the sample, we estimate only three quantiles of agricultural productivity to

avoid computation complexity and bias.
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Data

This study utilizes data from 16 West African countries from 1990 to 2021 to estimate the threshold
value of temperature for agricultural productivity. The study employed the index gross value of
agricultural output as the dependent variable to capture agricultural productivity. The index for
quality-adjusted agricultural area is used to measure land, and the index for the number of
economically active adults employed in agriculture is used as a proxy for labor. Capital is the
index of the value of net capital stock; materials is the index of crop and animal intermediate

inputs; and temperature is measured in degrees Celsius.

Table 1: Description and Source of Variables

Variables Description Source
Output (Y) Gross value of agricultural output from crops, Economic Research Service,
livestock, and aquaculture, constant 2015 US Department of Agriculture

prices index. (2024)
Land (N) Quality-adjusted  agricultural  area, 1000 Economic Research Service,
hectares of ‘“rainfed-equivalent cropland” US Department of Agriculture

index (2024)
Labor (L) Number of economically active adults Economic Research Service,
primarily employed in agriculture index. US Department of Agriculture

(2024)
Capital (K) Value of net capital stock, constant 2015 Economic Research Service,
prices index. US Department of Agriculture

(2024)
Materials (M) Index of crop and animal intermediate inputs, Economic Research Service,

2015.

US Department of Agriculture
(2024)

Temperature Temperature in degree Celsius. World Bank Climate Change

Knowledge Portal (2023)

Source: Authors’ compilation. Note: US is the United States.

We use the natural log index of the agriculture indicators for ease of interpretation and data
consistency, with a base year of 2015. Thus, the value of these variables in any year is the level of
that variable relative to 2015. As an example, the agricultural output value for Nigeria in 2021 is
110, meaning that agricultural productivity increased from 100 to 110, or by 10%, between 2015
and 2021. This example is similar to the agricultural inputs in the model. The counfries in this study
include Benin, Burkina Faso, Cabo Verde, Cote d’lvoire, Ghana, Gambia, Guinea, Guinea-Bissau,

Liberia, Mali, Mauritania, Niger, Nigeria, Senegal, Sierra Leone, and Togo.
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Presentation and Discussion of Results

In this section, the results of the empirical analysis are presented and discussed. However, prior to
the discussion of results, the correlation matrix of the variables in the model is examined to
ascertain the degree of relationship among the variables in the model in a bid to avoid
multicollinearity. The findings revealed in Table 2 show that agricultural output has a positive
correlation with agricultural land, labor, capital, and materials. However, the results show
agricultural output to have a negative correlation with temperature. Moreover, it is revealed that
multicollinearity might not be a major econometric issue in the modeling. This is because the
highest correlation, i.e., the correlation between land and material, is below the threshold of
Kennedy (2008), i.e., 0.700, and around the threshold of Asongu and Odhiambo (2021), i.e., 0.600,
used in literature to assess evidence of multicollinearity (Iheonu & Asongu, 2024). Furthermore, it
can be revealed that our key variable, which is temperature, has very little correlation with other
variables in the model, revealing that the coefficients and the standard errors of the temperature

variable will be unbiased with regards to the problem of multicollinearity.

Table 2: Correlation Matrix

Output Land Labor Capita Material Temperature
Output 1.0000
Land 0.8405 1.0000
Labor 0.5165 0.5706 1.0000
Capital 0.6615 0.6015 0.4499 1.0000
Material 0.7257 0.6447 0.3166 0.5753 1.0000
Temperature  -0.0290 0.0115 -0.0042 0.1013 0.0911 1.0000

Source: Authors’ computation.

In Table 3, we test for cross-sectional dependence in the model using the Breusch-Pagan LM test.
The result shows the presence of cross-sectional dependence as indicated by the probability
value, which is less than conventional levels of stafistical significance. This finding reveals the
importance of utilizing estimation procedures that can account for cross-sectional dependence

due to the interdependence of the error term across countries.

Table 3: Cross-Sectional Dependence Test
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Test Statistics Probability

Breusch-Pagan LM 674.429*** 0.0000

Source: Authors’ computation. Note: Null hypothesis: No cross-section dependence in residuals.

In Table 4, the results of the CADF unit root test are presented. The results are presented in both
the intercept and the intercept with trend specifications. The findings reveal that under the
intercept specification, land and temperature are stationary at levels at the 10% level of statistical
significance. However, under the intercept with frend specification, it is revealed that these
variables are not stationary in levels. Moreover, all the variables are revealed to be stationary after

first differencing.

Table 4: CADF Panel Unit Root Tests

Variables Intercept Intercept/trend

Levels First diff. Levels First diff.
Output -2.069 -2.707*** -2.221 -2.888***
Land -2.153* -2.606*** -2.043 -2.768**
Labor -0.919 -2.819%** -2.492 -2.775%*
Capital -0.847 -3.565*** -1.839 -3.550%**
Material -1.700 -2.699%** -2.291 -2.877%**
Temperature -2,103* -3.566*** -2.125 -3.610%**

Source: Authors’ computation. Note: ***, **, and * represent statistical significance at 1 percent, 5

percent, and 10 percent respectively.

This finding indicates the necessity of estimating whether long-run relationships exist in the model.
As previously revealed, the study utilizes three cointegrating tfechniques: the Kao test, the Pedroni
test, and the Westerlund test. The findings are presented in Table 5 and Table 6. The result reveals
the presence of a long-run relationship among the variables in the model. Under the Kao test, it is
revealed that the augmented Dickey-Fuller probability value, the unadjusted modified Dickey-
Fuller probability value, and the unadjusted Dickey-Fuller probability value are less than 5% levels

of statistical significance, indicating cointegration. In the Pedroni test, the Phillips-Perron and the
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Augmented Dickey-Fuller probability values are also less than 5% levels of statistical significance,

indicating cointegration.

Table 5: Panel Cointegration Test

Panel A: Kao Panel B:

Pedroni
Test Statistic P-value Test Statistic P-value
Modified Dickey- -0.0037 0.4985 Modified Phillips- 0.9421 0.1731
Fuller Perron
Dickey-Fuller -0.0590 0.4765 Phillips-Perron -6.8985*** 0.0000
Augmented 2.1493** 0.0158 Augmented -4.4228*** 0.0000
Dickey-Fuller Dickey-Fuller
Unadjusted -3.9443*** 0.0000
Modified Dickey-
Fuller
Unadjusted -2.4222%** 0.0077
Dickey-Fuller

Source: Authors’ computation. Note: Ho: No cointegration. Hi: All panels are cointegrated. *** and

** represents statistical significance at 1% and 5%, respectively. P-value is probability value.

Table 6: Westerlund Cointegration Test and Pesaran and Yamagata Slope Homogeneity Test

Statistic Value Z-value p-value  Robust p-value
Gt -3.173%** -3.832 0.000 0.000
Ga -8.237*** 1.817 0.965 0.000
Pt -11.827%** -3.520 0.000 0.000
Pa -8.500%** -0.236 0.407 0.000

14



Pesaran and Yamagata Test Statistic

Delta 21.282%** 0.000

Adjusted Delta 24.078*** 0.000

Source: Authors’ computation. Note: Null hypothesis: No cointegratfion. *** denotes statistical
significance at 1% in the presence of cross-sectional dependence. Pesaran and Yamagata test

values are computed using HAC standard errors.

In Table 6, the result of the Westerlund test for cointegration is examined. The results show
cointegration among the variables in the model. According to Persyn and Westerlund (2008), to
ascertain cointegration for the panel as a whole, the Pa and Pt test statistics are relevant because
they pool information over all the cross-sectional units. The emphasis should also be placed on the
robust probability value due to the presence of cross-sectional dependence. Accordingly, all four
cointegration test results are indicative of cointegration. Providing similar conclusions to the Kao
and Pedroni test results. More so, the findings of the Pesaran and Yamagata tests reveal slope
heterogeneity. This is revealed by the probability value, which is less than conventional levels of

statistical significance.

Table 7: Driscoll and Kraay OLS and Prais-Winsten Regression

Variables OLS Driscoll and Kraay Prais-Winsten Regression
Regression
Land 0.6819*** 0.6819***
(0.000) (0.000)
Labor 0.0908** 0.0908***
(0.017) (0.005)
Capital 0.1100*** 0.1100%**
(0.000) (0.000)
Materials 0.1205*** 0.1205***
(0.000) (0.000)
Temperature 0.2000* 0.2000*
(0.088) (0.080)
Temperature? -0.0041* -0.0041*
(0.067) (0.057)
Constant -2.4189 -2.4189
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(0.131) (0.101)

Threshold 24.39 24.39
R2 0.7893 0.7893
F-stafistic 575.93***
(0.0000)
Wald 1749 .7 4***
(0.0000)
Observations 512 512

Source: Authors’ computation. Note: ***, ** and * represent statistical significance at 1 percent, 5

percent, and 10 percent. Probability values are in parentheses.

In Table 7, the Prais-Winsten regression and the Driscoll and Kraay OLS regressions are presented.
Firstly, both estimates reveal similar findings in terms of the coefficients, statistical significance, and
signs of the regressions. It is revealed that agricultural inputs—land, labor, capital, and materials—
are all statistically significant in pushing up agricultural productivity in the region, signifying the
validity of the agricultural production function. Additionally, as revealed by Echevarria (1998), the
result revealed that the coefficients of capital, labor, land, and material add up to one. Itis further
revealed that land and materials are the most important factors among the four inputs, as
revealed by their coefficient values. Additionally, our core variable for this study, temperature, is
revealed to have an inverted U-shaped relationship with agricultural productivity. It reveals that
increasing temperatures increase agricultural productivity up to a threshold, after which higher
temperature values reduce agricultural productivity. This finding is consistent with the studies of
Sclenker and Roberts (2009), Burke, Hsiang, and Miguel (2015), and Ortiz-Bobea et al. (2021). These
studies have highlighted the importance of non-linearity in the temperature and agricultural
productivity nexus studies. Following Asongu and Odhiambo (2021), the temperature threshold at

which the overall effect of temperature on agricultural productivity changes from positive to

0.2000
2%0.0041

[2 % (24.3902 x —0.0041) + 0.2000]. Therefore, above the threshold of 24.3902 of mean annual

negative is 24.39 = |

]. It follows that at a critical mass of 24.39, the overall net effect is 0

temperature, the net effect on agricultural productivity becomes negative.

Table 8: Quantile Regression

Variables Q.20 Q.50 Q.80

Land 0.6851*** 0.6804*** 0.6064***
(0.000) (0.000) (0.000)

Labor 0.2650*** 0.0544 -0.0070
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(0.000) (0.510) (0.900)

Capital 0.127 7% 0.1295%** 0.1054***
(0.000) (0.000) (0.000)
Materials 0.1607*** 0.1203*** 0.1313***
(0.000) (0.000) (0.000)
Temperature 0.9605*** 0.1709 -0.1097
(0.000) (0.284) (0.402)
Temperature? -0.0190*** -0.0034 0.0021
(0.000) (0.259) (0.399)
Threshold 25.2763 n/a n/a
Constant -13.2224*** -2.0274 2.2089
(0.000) (0.370) (0.228)
Pseudo R2 0.5680 0.5916 0.5935
Observations 512 512 512

Source: Authors’ computation. Note: ***, ** and * represents stafistical significance at 1 percent, 5

percent, and 10 percent. Probability values are in parentheses. n/a represents not available.

In Table 8, the quantile regression estimates are presented across two quantiles and the median.
The application of just two quantiles, i.e., 0.20 and 0.80, is based on the sample size but has
implications for policy. The findings revealed that the inverted U-shaped relationship between
temperature and agricultural productivity in West Africa is only significant in countries where the
existing level of agricultural productivity is low. Further, it is revealed that the estimated threshold
for agricultural productivity in the 20t quantile is 25.2763, above which temperature has a
negative effect on agricultural productivity. It then follows that at a critical mass of 25.2763, the
overall net effect is 0 [2 x (25.2763 x —0.0190) + 0.9605]. Above the threshold of 25.2763 of the
mean annual tfemperature, the net effect on agricultural productivity becomes negative.
Additional findings further reveal that the coefficients of agricultural inputs are positive and
statistically significant. Moreover, an increasing return to scale is observed in the 20" quantile, i.e.,
in countries where the existing level of agricultural productivity is low. This is identified because the
sum of the agricultural inputs’ coefficients is greater than unity—an indication of increasing returns
to scale in West African countries where agricultural productivity is low. For the median and the
80th quantile, the threshold values cannot be estimated because the variables (tfemperature and

its square) used in the computation are not statistically significant.
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Conclusion

In this study, the temperature threshold for agricultural productivity in 16 West African countries
from 1990 to 2021 is estimated utilizing the Prais-Winsten regression, the Driscoll and Kraay OLS
regression, and QR. Understanding the non-linear nexus between temperature and agricultural
productivity is not only relevant for West Africa but also relevant for developing economies that
rely heavily on agriculture. The results reveal that an inverted U-shaped relationship exists between
temperature and agricultural productivity. The result revealed that the increase in temperature
increases agricultural productivity up to a critical mass, above which rising temperatures will lead
fo a decline in agricultural productivity. The findings estimated a threshold value for temperature
to be about 24.39 degrees Celsius. Moreover, in countries where the existing level of agricultural
productivity is low, the estimated temperature threshold is revealed to be around 25.27 degrees

Celsius.

These findings hold significance for the West African region. For most countries in the region, the
mean surface temperature is greater than the threshold values (World Bank, 2024d) and rising in
a significant number of countries in the region, signifying the need to promote climate-resilient
crop varieties that are adaptable to rising temperature levels. These crop varieties should have
tfraits such as early maturity, drought resistance, and heat tolerance to withstand temperature
extremes. The governments in West Africa, in collaboration with agricultural stakeholders, must

also invest in irrigation infrastructure at scale to ensure reliable access to water for agriculture.

Efforts must also be made to build the capacity of farmers via various stakeholder engagements
to adapt to rising temperatures. These engagements should build capacity for farmers through
climate-smart innovations such as agroforestry, carbon farming, and crop diversification, ensuring
that farmers have the knowledge and skills needed to implement these practices effectively.
Additionally, access to extension services and technical support provided by the government and
stakeholders should be improved to provide farmers with ongoing assistance and guidance in
adopting climate-smart innovations. Moreover, agricultural agencies can invest in seasonal
climate forecasting systems that provide farmers with timely information about anticipated
temperature rises. This will enable farmers to adjust their planting schedules, crop selection, and

water management practices accordingly.

This study however has some limitations. One of which is the assumption of exogeneity of
temperature. Future studies can hence, account for endogeneity in the temperature and
agricultural productivity nexus. Future studies can also consider Sub-Saharan Africa, expanding

the understanding of the nexus. The study has contributed to the theory of change in the
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agriculture literature by establishing critical levels of temperature above which climate change
negatively affects agricultural productivity. Accordingly, the theory of change assumes that
agricultural research for development (AR4D) is a key mechanism for economic development in
the sampled countries, and we have shown that understanding the critical levels at which
temperature rise is detrimental to agricultural productivity confributes modestly to the extant

theoretical literature.

These findings obviously leave room for further research, especially in view of considering whether
the established findings withstand empirical scrutiny in other regions of Africa. This future research
direction is motivated by the limitation that the findings in this study cannot be generalized to the
entire African continent. Furthermore, future research should also focus on other United Nations’
sustainable development goals (SDGs) that are relevant to addressing concerns related to

climate change.
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Appendix Al: Descriptive Statistics

Variables Observations  Mean Standard Minimum Maximum
Deviation

Output 512 76.8164 25.8280 25 163

Land 512 82.5976 21.9682 39 146
Labour 512 92.7753 17.0143 46 134
Capital 512 74.4179 32.0343 12 188
Material 512 86.5136 63.0934 4 470
Temperature 512 27.2571 1.4371 20.05 29.3667

Source: Authors’ computation.
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